How to get a property from a plist - lisp

I am a newbie in Lisp.
I want to access a particular property from a property list with a string variable like this
(setf sym (list :p1 1))
(setf x "p1")
(getf sym :x)

About cl:getf
Let Petit Prince's answer is right that getf is probably the function you want to use here, but note that it can be used for more than just keyword symbols. You can use it for any objects. A property list is just a list of alternating indicators and values, and any object can be an indicator:
(let ((plist (list 'a 'b 'c 'd)))
(getf plist 'c))
;=> D
You can even use strings as indicators:
(let* ((name "p1")
(plist (list name 1)))
(getf plist name))
;=> 1
However, that's probably not great practice, since getf compares indicators with eq. That means that using strings as indicators might not be reliable, depending on your use case:
(let ((plist (list "p1" 1)))
(getf plist "p1"))
;=> NIL
For your example
In your case, you're trying to take a string and find the object for a symbol with a name that's string-equal (i.e., with the same characters, but disregarding case). It probably makes more sense to loop over the list and compare indicators with string-equal.
(let ((plist '(:p1 1 :p2 2)))
(loop
for (indicator value) on plist by #'cddr
when (string-equal indicator "p1")
return value))
;=> 1
And of course, you can wrap that up in a function for abstraction:
(defun getf-string-equal (plist indicator)
(loop
for (i v) on plist by #'cddr
when (string-equal i indicator)
return v))
(getf-string-equal '(:p1 1 :p2 2) "p1")
;=> 1

The second parameter to getf is a keyword, and you have string. A keyword is a symbol that lives in the package KEYWORD and has usually been uppercased by the reader:
? (setf sym (list :p1 1))
(:P1 1)
? sym
(:P1 1)
So you need to use:
? (getf sym (find-symbol (string-upcase x) "KEYWORD"))
1

Related

Alternating upcase/downcase for a string in Common Lisp

I want to write a function that will return a string formatted with alternative upcase/downcase in Common Lisp. For example, entering "stackoverflow" should return the string "StAcKoVeRfLoW". Here's my attempt, but it just returns a list of cons pairs. Am I on the right track?
(defun mockify (chars)
(let ((lst (coerce chars 'list)))
(if (equal lst nil) nil
(coerce (cons
(cons (char-upcase (car lst)) (char-downcase (cadr lst)))
(mockify (cddr lst)))
'string))))
CL-USER> (mockify "meow")
((#\M . #\e) (#\O . #\w))
Using MAP: we are creating a new string, moving over the original string and upcase/downcase based on an alternating boolean variable.
CL-USER 353 > (let ((string "stackoverflow")
(upcase t))
(map (type-of string)
(lambda (element)
(prog1 (if upcase
(char-upcase element)
(char-downcase element))
(setf upcase (not upcase))))
string))
"StAcKoVeRfLoW"
(defun mockify (chars)
(let ((lst (coerce chars 'list)))
(if (equal lst nil)
;; return nil
nil
;; return a string (coerce)
(coerce
;; a list whose elements are cons-cells, but ...
(cons (cons (char-upcase (car lst))
(char-downcase (cadr lst)))
;; ... the rest is computed by calling mockify,
;; which returns either an empty list or a string
(mockify (cddr lst)))
'string))))
The types of your expressions are confusing, and in fact your example leads to an error when using SBCL:
> (mockify "meow")
The value
(#\O . #\w)
is not of type
CHARACTER
when setting an element of (ARRAY CHARACTER)
[Condition of type TYPE-ERROR]
Also, you are going to have to handle corner cases in your code, because as is, it is possible that (cadr list), i.e. (second list), is called on a list that has only one element. Then, the result would be NIL and char-downcase would fail with an error.
Using only strings
I'd suggest writing a version of the function that does not use intermediate lists:
let R be the string-downcase of the whole string
then modify every other character of R by upcasing it
So for example, one way to do it (among others) would be:
(defun mockify (chars)
(let ((chars (string-downcase chars)))
(prog1 chars
(upcasify chars 0))))
(defun upcasify (string index)
(when (< index (length string))
(setf (char string index) (char-upcase (char string index)))
(upcasify string (+ index 2))))
Using only lists
If you prefer having a recursive function that processes lists, I'd rather define it in layers:
coerce string to list
process the list recursively
eventually, coerce the resulting list back to a string
This will avoid doing conversions from strings to lists at every step, and make the code simpler at each level.
(defun mockify (chars)
(coerce (mockify-list (coerce chars 'list)) 'string))
(defun mockify-list (chars)
...)
The list version is recursive and look like what you tried to do, but take care of corner cases.
There is more than one way to do it. Here is a loop based solution:
(let ((string "StackOverflow"))
(with-output-to-string (s)
(loop :for c :across string
:for up := t :then (not up)
:do (princ (if up
(char-upcase c)
(char-downcase c))
s))))
Fun thing - I actually wrote a similar thing some time ago.
https://github.com/phoe/string-pokemonize

What does gensym do in Lisp?

contextualization: I've been doing a university project in which I have to write a parser for regular expressions and build the corresponding epsilon-NFA. I have to do this in Prolog and Lisp.
I don't know if questions like this are allowed, if not I apologize.
I heard some of my classmates talking about how they used the function gensym for that, I asked them what it did and even checked up online but I literally can't understand what this function does neither why or when is best to use it.
In particular, I'm more intrested in what it does in Lisp.
Thank you all.
GENSYM creates unique symbols. Each call creates a new symbol. The symbol usually has a name which includes a number, which is counted up. The name is also unique (the symbol itself is already unique) with a number, so that a human reader can identify different uninterned symbols in the source code.
CL-USER 39 > (gensym)
#:G1083
CL-USER 40 > (gensym)
#:G1084
CL-USER 41 > (gensym)
#:G1085
CL-USER 42 > (gensym)
#:G1086
gensym is often used in Lisp macros for code generation, when the macro needs to create new identifiers, which then don't clash with existing identifiers.
Example: we are going to double the result of a Lisp form and we are making sure that the Lisp form itself will be computed only once. We do that by saving the value in a local variable. The identifier for the local variable will be computed by gensym.
CL-USER 43 > (defmacro double-it (it)
(let ((new-identifier (gensym)))
`(let ((,new-identifier ,it))
(+ ,new-identifier ,new-identifier))))
DOUBLE-IT
CL-USER 44 > (macroexpand-1 '(double-it (cos 1.4)))
(LET ((#:G1091 (COS 1.4)))
(+ #:G1091 #:G1091))
T
CL-USER 45 > (double-it (cos 1.4))
0.33993432
a little clarification of the existing answers (as the op is not yet aware of the typical common lisp macros workflow):
consider the macro double-it, proposed by mr. Joswig. Why would we bother creating this whole bunch of let? when it can be simply:
(defmacro double-it (it)
`(+ ,it ,it))
and ok, it seems to be working:
CL-USER> (double-it 1)
;;=> 2
but look at this, we want to increment x and double it
CL-USER> (let ((x 1))
(double-it (incf x)))
;;=> 5
;; WHAT? it should be 4!
the reason can be seen in macro expansion:
(let ((x 1))
(+ (setq x (+ 1 x)) (setq x (+ 1 x))))
you see, as the macro doesn't evaluate form, just splices it into generated code, it leads to incf being executed twice.
the simple solution is to bind it somewhere, and then double the result:
(defmacro double-it (it)
`(let ((x ,it))
(+ x x)))
CL-USER> (let ((x 1))
(double-it (incf x)))
;;=> 4
;; NICE!
it seems to be ok now. really it expands like this:
(let ((x 1))
(let ((x (setq x (+ 1 x))))
(+ x x)))
ok, so what about the gensym thing?
let's say, you want to print some message, before doubling your value:
(defmacro double-it (it)
`(let* ((v "DOUBLING IT")
(val ,it))
(princ v)
(+ val val)))
CL-USER> (let ((x 1))
(double-it (incf x)))
;;=> DOUBLING IT
;;=> 4
;; still ok!
but what if you accidentally name value v instead of x:
CL-USER> (let ((v 1))
(double-it (incf v)))
;;Value of V in (+ 1 V) is "DOUBLING IT", not a NUMBER.
;; [Condition of type SIMPLE-TYPE-ERROR]
It throws this weird error! Look at the expansion:
(let ((v 1))
(let* ((v "DOUBLING IT") (val (setq v (+ 1 v))))
(princ v)
(+ val val)))
it shadows the v from the outer scope with string, and when you are trying to add 1, well it obviously can't. Too bad.
another example, say you want to call the function twice, and return 2 results as a list:
(defmacro two-funcalls (f v)
`(let ((x ,f))
(list (funcall x ,v) (funcall x ,v))))
CL-USER> (let ((y 10))
(two-funcalls (lambda (z) z) y))
;;=> (10 10)
;; OK
CL-USER> (let ((x 10))
(two-funcalls (lambda (z) z) x))
;; (#<FUNCTION (LAMBDA (Z)) {52D2D4AB}> #<FUNCTION (LAMBDA (Z)) {52D2D4AB}>)
;; NOT OK!
this class of bugs is very nasty, since you can't easily say what's happened.
What is the solution? Obviously not to name the value v inside macro. You need to generate some sophisticated name that no one would reproduce in their code, like my-super-unique-value-identifier-2019-12-27. This would probably save you, but still you can't really be sure. That's why gensym is there:
(defmacro two-funcalls (f v)
(let ((fname (gensym)))
`(let ((,fname ,f))
(list (funcall ,fname ,v) (funcall ,fname ,v)))))
expanding to:
(let ((y 10))
(let ((#:g654 (lambda (z) z)))
(list (funcall #:g654 y) (funcall #:g654 y))))
you just generate the var name for the generated code, it is guaranteed to be unique (meaning no two gensym calls would generate the same name for the runtime session),
(loop repeat 3 collect (gensym))
;;=> (#:G645 #:G646 #:G647)
it still can potentially be clashed with user var somehow, but everybody knows about the naming and doesn't call the var #:GXXXX, so you can consider it to be impossible. You can further secure it, adding prefix
(loop repeat 3 collect (gensym "MY_GUID"))
;;=> (#:MY_GUID651 #:MY_GUID652 #:MY_GUID653)
GENSYM will generate a new symbol at each call. It will be garanteed, that the symbol did not exist before it will be generated and that it will never be generated again. You may specify a symbols prefix, if you like:
CL-USER> (gensym)
#:G736
CL-USER> (gensym "SOMETHING")
#:SOMETHING737
The most common use of GENSYM is generating names for items to avoid name clashes in macro expansion.
Another common purpose is the generaton of symbols for the construction of graphs, if the only thing demand you have is to attach a property list to them, while the name of the node is not of interest.
I think, the task of NFA-generation could make good use of the second purpose.
This is a note to some of the other answers, which I think are fine. While gensym is the traditional way of making new symbols, in fact there is another way which works perfectly well and is often better I find: make-symbol:
make-symbol creates and returns a fresh, uninterned symbol whose name is the given name. The new-symbol is neither bound nor fbound and has a null property list.
So, the nice thing about make-symbol is it makes a symbol with the name you asked for, exactly, without any weird numerical suffix. This can be helpful when writing macros because it makes the macroexpansion more readable. Consider this simple list-collection macro:
(defmacro collecting (&body forms)
(let ((resultsn (make-symbol "RESULTS"))
(rtailn (make-symbol "RTAIL")))
`(let ((,resultsn '())
(,rtailn nil))
(flet ((collect (it)
(let ((new (list it)))
(if (null ,rtailn)
(setf ,resultsn new
,rtailn new)
(setf (cdr ,rtailn) new
,rtailn new)))
it))
,#forms
,resultsn))))
This needs two bindings which the body can't refer to, for the results, and the last cons of the results. It also introduces a function in a way which is intentionally 'unhygienic': inside collecting, collect means 'collect something'.
So now
> (collecting (collect 1) (collect 2) 3)
(1 2)
as we want, and we can look at the macroexpansion to see that the introduced bindings have names which make some kind of sense:
> (macroexpand '(collecting (collect 1)))
(let ((#:results 'nil) (#:rtail nil))
(flet ((collect (it)
(let ((new (list it)))
(if (null #:rtail)
(setf #:results new #:rtail new)
(setf (cdr #:rtail) new #:rtail new)))
it))
(collect 1)
#:results))
t
And we can persuade the Lisp printer to tell us that in fact all these uninterned symbols are the same:
> (let ((*print-circle* t))
(pprint (macroexpand '(collecting (collect 1)))))
(let ((#2=#:results 'nil) (#1=#:rtail nil))
(flet ((collect (it)
(let ((new (list it)))
(if (null #1#)
(setf #2# new #1# new)
(setf (cdr #1#) new #1# new)))
it))
(collect 1)
#2#))
So, for writing macros I generally find make-symbol more useful than gensym. For writing things where I just need a symbol as an object, such as naming a node in some structure, then gensym is probably more useful. Finally note that gensym can be implemented in terms of make-symbol:
(defun my-gensym (&optional (thing "G"))
;; I think this is GENSYM
(check-type thing (or string (integer 0)))
(let ((prefix (typecase thing
(string thing)
(t "G")))
(count (typecase thing
((integer 0) thing)
(t (prog1 *gensym-counter*
(incf *gensym-counter*))))))
(make-symbol (format nil "~A~D" prefix count))))
(This may be buggy.)

Lisp use member through a list of lists

in common lisp I have a tree of symbols like:
(setf a '((shoe (walks(town)) (has-laces(snow)))
(tree (grows(bob)) (is-green(house)) (is tall(work)))))
all are symbols.
I want to return the sublist that contains the symbol I search for (in this case I might search using the symbol shoe and return the entire sublist in which they are contained. the keywords are always in the second layer never deeper
trying to use:
(mapcar #'member (shoe my-list))
but requires shoe to be a list (because of mapcar?) things got very convoluted after that. help please!
Given:
(setf a '((shoe (walks(town)) (has-laces(snow)))
(tree (grows(bob)) (is-green(house)) (is tall(work)))))
We can find the first (shoe ...) sublist like this:
(find 'shoe a :key #'car)
-> (SHOE (WALKS (TOWN)) (HAS-LACES (SNOW)))
I.e. search through the list of objects, which are lists, and use their car as the search key.
If there can be duplicates and we want a list of all of the sublists which start with shoe, then Common Lisp's standard library shows itself a bit clumsy. There isn't a nice function which finds all occurrences of an item; we resort to remove-if-not with a lambda:
(remove-if-not (lambda (x) (eq x 'shoe)) a :key #'car)
We can also write a loop expression:
(loop for (sym . rest) in a and
for whole in a
if (eq sym 'shoe) collect whole)
We can also make ourselves a quick and dirty find-all which can be invoked similarly to all:
(defun find-all (item sequence &key (key #'identity) (test #'eql))
(remove-if-not (lambda (elem) (funcall test item elem)) sequence :key key))
Then:
(find-all 'shoe a :key #'car)
--> ((SHOE (WALKS (TOWN)) (HAS-LACES (SNOW))))
(find-all 'x '((x 1) (y 2) (x 3) (z 4)) :key #'car)
--> ((X 1) (X 3))
(find 'x '((x 1) (y 2) (x 3) (z 4)) :key #'car)
--> ((X 1))

Assignment in Lisp

I have the following setup in Common Lisp. my-object is a list of 5 binary trees.
(defun make-my-object ()
(loop for i from 0 to 5
for nde = (init-tree)
collect nde))
Each binary tree is a list of size 3 with a node, a left child and a right child
(defstruct node
(min 0)
(max 0)
(ctr 0))
(defun vals (tree)
(car tree))
(defun left-branch (tree)
(cadr tree))
(defun right-branch (tree)
(caddr tree))
(defun make-tree (vals left right)
(list vals left right))
(defun init-tree (&key (min 0) (max 1))
(let ((n (make-node :min min :max max)))
(make-tree n '() '())))
Now, I was trying to add an element to one of the binary trees manually, like this:
(defparameter my-object (make-my-object))
(print (left-branch (car my-object))) ;; returns NIL
(let ((x (left-branch (car my-object))))
(setf x (cons (init-tree) x)))
(print (left-branch (car my-object))) ;; still returns NIL
The second call to print still returns NIL. Why is this? How can I add an element to the binary tree?
The first function is just:
(defun make-my-object ()
(loop repeat 5 collect (init-tree)))
Now you define a structure for node, but you use a list for the tree and my-object? Why aren't they structures?
Instead of car, cadr and caddr one would use first, second, third.
(let ((x (left-branch (car my-object))))
(setf x (cons (init-tree) x)))
You set the local variable x to a new value. Why? After the let the local variable is also gone. Why aren't you setting the left branch instead? You would need to define a way to do so. Remember: Lisp functions return values, not memory locations you can later set. How can you change the contents in a list? Even better: use structures and change the slot value. The structure (or even CLOS classes) has following advantages over plain lists: objects carry a type, slots are named, accessors are created, a make function is created, a type predicate is created, ...
Anyway, I would define structures or CLOS classes for node, tree and object...
Most of the code in this question isn't essential to the real problem here. The real problem comes in with the misunderstanding of this code:
(let ((x (left-branch (car my-object))))
(setf x (cons (init-tree) x)))
We can see the same kind of behavior without user-defined structures of any kind:
(let ((cell (cons 1 2)))
(print cell) ; prints (1 . 2)
(let ((x (car cell)))
(setf x 3)
(print cell))) ; prints (1 . 2)
If you understand why both print statements produce (1 . 2), then you've got enough to understand why your own code isn't doing what you (previously) expected it to do.
There are two variables in play here: cell and x. There are three values that we're concerned with 1, 2, and the cons-cell produced by the call (cons 1 2). Variables in Lisp are often called bindings; the variable, or name, is bound to a value. The variable cell is bound to the the cons cell (1 . 2). When we go into the inner let, we evaluate (car cell) to produce the value 1, which is then bound to the variable x. Then, we assign a new value, 3, to the variable x. That doesn't modify the cons cell that contains the value that x was originally bound to. Indeed, the value that was originally bound to x was produced by (car cell), and once the call to (car cell) returned, the only value that mattered was 1.
If you have some experience in other programming languages, this is directly analogous to something like
int[] array = ...;
int x = array[2]; // read from the array; assign result to x
x = 42; // doesn't modify the array
If you want to modify a structure, you need to setf the appropriate part of the structure. E.g.:
(let ((cell (cons 1 2)))
(print cell) ; prints (1 . 2)
(setf (car cell) 3)
(print cell)) ; prints (3 . 2)

macro to feed a calculated binding list into a 'let'?

I'm trying different binding models for macro lambda lists.
Edit: in fact the lambda list for my test macros is always (&rest ...). Which means that I'm 'destructuring' the argument list and not the lambda list. I try to get a solution that works for combining optional with key arguments or rest/body with key arguments - both combinations don't work in the Common Lisp standard implementation.
So I have different functions giving me a list of bindings having the same syntax as used by 'let'.
E.g:
(build-bindings ...) => ((first 1) middle (last "three"))
Now I thought to use a simple macro inside my test macros feeding such a list to 'let'.
This is trivial if I have a literal list:
(defmacro let-list (_list &rest _body)
`(let ,_list ,#_body))
(let-list ((a 236)) a) => 236
But that's the same as a plain 'let'.
What I'd like to have is the same thing with a generated list.
So e.g.
(let-list (build-bindings ...)
(format t "first: ~s~%" first)
last)
with (build-bindings ...), evaluated in the same lexical scope as the call (let-list ...), returning
((first 1) middle (last "three"))
the expansion of the macro should be
(let
((first 1) middle (last "three"))
(format t "first: ~s~%" first)
last)
and should print 1 and return "three".
Any idea how to accomplish that?
Edit (to make the question more general):
If I have a list of (symbol value) pairs, i.e. same syntax that let requires for it's list of bindings, e.g. ((one 1) (two 'two) (three "three")), is there any way to write a macro that creates lexical bindings of the symbols with the supplied values for it's &rest/&body parameter?
This is seems to be a possible solution which Joshua pointed me to:
(let ((list_ '((x 23) (y 6) z)))
(let
((symbols_(loop for item_ in list_
collect (if (listp item_) (car item_) item_)))
(values_ (loop for item_ in list_
collect (if (listp item_) (cadr item_) nil))))
(progv symbols_ values_
(format t "x ~s, y ~s, z ~s~%" x y z))))
evaluates to:
;Compiler warnings :
; In an anonymous lambda form: Undeclared free variable X
; In an anonymous lambda form: Undeclared free variable Y
; In an anonymous lambda form: Undeclared free variable Z
x 23, y 6, z NIL
I could also easily rearrange my build-bindings functions to return the two lists needed.
One problem is, that the compiler spits warnings if the variables have never been declared special.
And the other problem that, if the dynamically bound variables are also used in a surrounding lexical binding, they a shadowed by the lexical binding - again if they have never been declared special:
(let ((x 47) (y 11) (z 0))
(let ((list_ '((x 23) (y 6) z)))
(let
((symbols_(loop for item_ in list_
collect (if (listp item_) (car item_) item_)))
(values_ (loop for item_ in list_
collect (if (listp item_) (cadr item_) nil))))
(progv symbols_ values_
(format t "x ~s, y ~s, z ~s~%" x y z)))))
evaluates to:
x 47, y 11, z 0
A better way could be:
(let ((x 47) (y 11) (z 0))
(locally
(declare (special x y))
(let ((list_ '((x 23) (y 6) z)))
(let
((symbols_(loop for item_ in list_
collect (if (listp item_) (car item_) item_)))
(values_ (loop for item_ in list_
collect (if (listp item_) (cadr item_) nil))))
(progv symbols_ values_
(format t "x ~s, y ~s, z ~s~%" x y z))))))
evaluates to:
;Compiler warnings about unused lexical variables skipped
x 23, y 6, z NIL
I can't see at the moment whether there are other problems with the dynamic progv bindings.
But the whole enchilada of a progv wrapped in locally with all the symbols declared as special cries for a macro again - which is again not possible due to same reasons let-list doesn't work :(
The possiblilty would be a kind of macro-lambda-list destructuring-hook which I'm not aware of.
I have to look into the implementation of destructuring-bind since that macro does kind of what I'd like to do. Perhaps that will enlight me ;)
So a first (incorrect) attempt would look something like this:
(defun build-bindings ()
'((first 1) middle (last "three")))
(defmacro let-list (bindings &body body)
`(let ,bindings
,#body))
Then you could try doing something like:
(let-list (build-bindings)
(print first))
That won't work, of course, because the macro expansion leaves the form (build-bindings) in the resulting let, in a position where it won't be evaluated:
CL-USER> (pprint (macroexpand-1 '(let-list (build-bindings)
(print first))))
(LET (BUILD-BINDINGS)
(PRINT FIRST))
Evaluation during Macroexpansion time
The issue is that you want the result of build-bindings at macroexpansion time, and that's before the code as a whole is run. Now, in this example, build-bindings can be run at macroexpansion time, because it's not doing anything with any arguments (remember I asked in a comment what the arguments are?). That means that you could actually eval it in the macroexpansion:
(defmacro let-list (bindings &body body)
`(let ,(eval bindings)
,#body))
CL-USER> (pprint (macroexpand-1 '(let-list (build-bindings)
(print first))))
(LET ((FIRST 1) MIDDLE (LAST "three"))
(PRINT FIRST))
Now that will work, insofar as it will bind first, middle, and last to 1, nil, and "three", respectively. However, if build-bindings actually needed some arguments that weren't available at macroexpansion time, you'd be out of luck. First, it can take arguments that are available at macroexpansion time (e.g., constants):
(defun build-bindings (a b &rest cs)
`((first ',a) (middle ',b) (last ',cs)))
CL-USER> (pprint (macroexpand-1 '(let-list (build-bindings 1 2 3 4 5)
(print first))))
(LET ((FIRST '1) (MIDDLE '2) (LAST '(3 4 5)))
(PRINT FIRST))
You could also have some of the variables appear in there:
(defun build-bindings (x ex y why)
`((,x ,ex) (,y ,why)))
CL-USER> (pprint (macroexpand-1 '(let-list (build-bindings 'a 'ay 'b 'bee)
(print first))))
(LET ((A AY) (B BEE))
(PRINT FIRST))
What you can't do, though, is have the variable names be determined from values that don't exist until runtime. E.g., you can't do something like:
(let ((var1 'a)
(var2 'b))
(let-list (build-bindings var1 'ay var2 'bee)
(print first))
because (let-list (build-bindings …) …) is macroexpanded before any of this code is actually executed. That means that you'd be trying to evaluate (build-bindings var1 'ay var2 'bee) when var1 and var2 aren't bound to any values.
Common Lisp does all its macroexpansion first, and then evaluates code. That means that values that aren't available until runtime are not available at macroexpansion time.
Compilation (and Macroexpansion) at Runtime
Now, even though I said that Common Lisp does all its macroexpansion first, and then evaluates code, the code above actually uses eval at macroexpansion to get some extra evaluation earlier. We can do things in the other direction too; we can use compile at runtime. That means that we can generate a lambda function and compile it based on code (e.g., variable names) provided at runtime. We can actually do this without using a macro:
(defun %dynamic-lambda (bindings body)
(flet ((to-list (x) (if (listp x) x (list x))))
(let* ((bindings (mapcar #'to-list bindings))
(vars (mapcar #'first bindings))
(vals (mapcar #'second bindings)))
(apply (compile nil `(lambda ,vars ,#body)) vals))))
CL-USER> (%dynamic-lambda '((first 1) middle (last "three"))
'((list first middle last)))
;=> (1 NIL "three")
This compiles a lambda expression that is created at runtime from a body and a list of bindings. It's not hard to write a macro that takes some fo the quoting hassle out of the picture:
(defmacro let-list (bindings &body body)
`(%dynamic-lambda ,bindings ',body))
CL-USER> (let-list '((first 1) middle (last "three"))
(list first middle last))
;=> (1 NIL "three")
CL-USER> (macroexpand-1 '(let-list (build-bindings)
(list first middle last)))
;=> (%DYNAMIC-LAMBDA (BUILD-BINDINGS) '((LIST FIRST MIDDLE LAST)))
CL-USER> (flet ((build-bindings ()
'((first 1) middle (last "three"))))
(let-list (build-bindings)
(list first middle last)))
;=> (1 NIL "three")
This gives you genuine lexical variables from a binding list created at runtime. Of course, because the compilation is happening at runtime, you lose access to the lexical environment. That means that the body that you're compiling into a function cannot access the "surrounding" lexical scope. E.g.:
CL-USER> (let ((x 3))
(let-list '((y 4))
(list x y)))
; Evaluation aborted on #<UNBOUND-VARIABLE X {1005B6C2B3}>.
Using PROGV and special variables
If you don't need lexical variables, but can use special (i.e., dynamically scoped) variables instead, you can establish bindings at runtime using progv. That would look something like:
(progv '(a b c) '(1 2 3)
(list c b a))
;;=> (3 2 1)
You'll probably get some warnings with that if run it, because when the form is compiled, there's no way to know that a, b, and c are supposed to be special variables. You can use locally to add some special declarations, though:
(progv '(a b c) '(1 2 3)
(locally
(declare (special a b c))
(list c b a)))
;;=> (3 2 1)
Of course, if you're doing this, then you have to know the variables in advance which is exactly what you were trying to avoid in the first place. However, if you're willing to know the names of the variables in advance (and your comments seem like you might be okay with that), then you can actually use lexical variables.
Lexical variables with values computed at run time
If you're willing to state what the variables will be, but still want to compute their values dynamically at run time, you can do that relatively easily. First, lets write the direct version (with no macro):
;; Declare three lexical variables, a, b, and c.
(let (a b c)
;; Iterate through a list of bindings (as for LET)
;; and based on the name in the binding, assign the
;; corresponding value to the lexical variable that
;; is identified by the same symbol in the source:
(dolist (binding '((c 3) (a 1) b))
(destructuring-bind (var &optional value)
(if (listp binding) binding (list binding))
(ecase var
(a (setf a value))
(b (setf b value))
(c (setf c value)))))
;; Do something with the lexical variables:
(list a b c))
;;=> (1 NIL 3)
Now, it's not too hard to write a macrofied version of this. This version isn't perfect, (e.g., there could be hygiene issues with names, and declarations in the body won't work (because the body is being spliced in after some stuff). It's a start, though:
(defmacro computed-let (variables bindings &body body)
(let ((assign (gensym (string '#:assign-))))
`(let ,variables
(flet ((,assign (binding)
(destructuring-bind (variable &optional value)
(if (listp binding) binding (list binding))
(ecase variable
,#(mapcar (lambda (variable)
`(,variable (setf ,variable value)))
variables)))))
(map nil #',assign ,bindings))
,#body)))
(computed-let (a b c) '((a 1) b (c 3))
(list a b c))
;;=> (1 NIL 3)
One way of making this cleaner would be to avoid the assignment altogether, and the computed values to provide the values for the binding directly:
(defmacro computed-let (variables bindings &body body)
(let ((values (gensym (string '#:values-)))
(variable (gensym (string '#:variable-))))
`(apply #'(lambda ,variables ,#body)
(let ((,values (mapcar #'to-list ,bindings)))
(mapcar (lambda (,variable)
(second (find ,variable ,values :key 'first)))
',variables)))))
This version creates a lambda function where the arguments are the specified variables and the body is the provided body (so the declarations in the body are in an appropriate place), and then applies it to a list of values extracted from the result of the computed bindings.
Using LAMBDA or DESTRUCTURING-BIND
since I'm doing some "destructuring" of the arguments (in a bit a different way), I know which arguments must be present or have which
default values in case of missing optional and key arguments. So in
the first step I get a list of values and a flag whether an optional
or key argument was present or defaulted. In the second step I would
like to bind those values and/or present/default flag to local
variables to do some work with them
This is actually starting to sound like you can do what you need to by using a lambda function or destructuring-bind with keyword arguments. First, note that you can use any symbol as a keyword argument indicator. E.g.:
(apply (lambda (&key
((b bee) 'default-bee b?)
((c see) 'default-see c?))
(list bee b? see c?))
'(b 42))
;;=> (42 T DEFAULT-SEE NIL)
(destructuring-bind (&key ((b bee) 'default-bee b?)
((c see) 'default-see c?))
'(b 42)
(list bee b? see c?))
;;=> (42 T DEFAULT-SEE NIL)
So, if you just make your function return bindings as a list of keyword arguments, then in the destructuring or function application you can automatically bind corresponding variables, assign default values, and check whether non-default values were provided.
Acting a bit indirectly:
a solution that works for combining optional with key arguments or
rest/body with key arguments
Have you considered the not-entirely-uncommon paradigm of using a sub-list for the keywords?
e.g.
(defmacro something (&key (first 1) second) &body body) ... )
or, a practical use from Alexandria:
(defmacro with-output-to-file ((stream-name file-name
&rest args
&key (direction nil direction-p)
&allow-other-keys)
&body body)