Smooth circular data - Matlab - matlab

I am currently doing some image segmentation on a bone qCT picture, see for instance images below.
I am trying to find the different borders in the picture for instance the outer border separating the bone to the noisy background. In this analysis I am getting a list of points (vec(1,:) containing x values and vex(2,:) containing the y values) in random order.
To get them into order I am using using a block of code which effectively takes the first point vec(1,1),vec(1,2) and then finds the closest point among the rest of the points in the vector. And then repeats.
Now my problem is that I want to smooth the data but how do I do that as the points lie in a circular formation? (I do have the Curve Fitting Toolbox)

Not exactly a smoothing procedure, but a way to simplify your data would be to compute the boundary of the convex hull of the data.
K = convhull(O(1,:), O(2,:));
plot(O(1,K), O(2,K));
You could also consider using alpha shapes if you want more control.

Related

How to check if two shapes in a binary image are similar in MATLAB?

I have two binary images, each of which have a single white filled parallelogram and a black background. The only difference between the two images is that the parallelograms are in different locations and are slightly different from one another in shape. All the parameters between the two images are the same except for that one change.
I want to check how similar the shape of the two parallelograms are, by using some sort of comparing measure.
I looked into ssimval function in MATLAB but it seems to be taking the whole image into consideration rather than just the white blobs. Is there any other function I can use for this purpose?
For visually checking similarity, you can plot their probability density function and for numeric similarity, compute some similarity measure, such as, KL Divergence, etc.
In a simple way, you can segment your binary image with simple bwlabel function. Then use regionprops function to find perimeter and area of your desire segment. Moreover, center of region is also another comparison point.
You could do it with polygons, by using the polyshape class.
First convert the binary mask to a set of corner points. You can do it with a convex hull, by calling regionprops(bwI, 'ConvexHull').
Then convert the corner points into polygons, by calling polyshape.
Finally measure the dissimiliarities of the polygons by measuring their turning distance. Turning distance is rotation- and scaling invariant, so you might want to add additive terms to your distance metric for those if your problem demands it.
A very simple solution for comparing two binary image is using boolean operations.
Your images contains zero and one values. so If you use boolean operation.
suppose your two images are : B1 , B2
C = B1 & (~B2)
if sum(C(:))==0
% two image are same
else
% two image are different
end

matlab: limiting erosion on binary images

I am trying to erode objects in a binary image such that they do not become smaller than some fixed size. Consider, for instance, a binary map composed of connected components (blobs), wherein one defines blob size by either the minimal or maximal antipolar (anti-perimetric) distance (i.e., the distance between two points that are as far from one another as they can be on the perimeter or contour of the blob; if the contour consists of N consecutively numbered points, then the distances evaluated would be those between points 1 and N/2+1, points 2 and N/2+2, etc.). Given such an arrangement, I seek to erode these blobs until the distance metric reaches a specified limit. If the blobs were simple circles, then the effect could be realized by ultimate erosion followed by dilation to a fixed size; however, the contour of an irregular object would be lost by such a procedure. Is there a way to achieve such an effect for connected, irregular components using built-in functions in MATLAB?
With no image and already tried code presented I can understand you wrong, but may be iterative using bwmorph with 'thin','skel' or 'shrink' will help you.
while(cond < cond_threshold)
bw=bwmorph(bw,...,1); %one of the options above
cond = calc_cond(bw);
end

Matlab: separate connected components

I was working on my image processing problem with detecting coins.
I have some images like this one here:
and wanted to separate the falsely connected coins.
We already tried the watershed method as stated on the MATLAB-Homepage:
the-watershed-transform-strategies-for-image-segmentation.html
especially since the first example is exactly our problem.
But instead we get a somehow very messed up separation as you can see here:
We already extracted the area of the coin using the regionprops Extrema parameter and casting the watershed only on the needed area.
I'd appreciate any help with the problem or even another method of getting it separated.
If you have the Image Processing Toolbox, I can also suggest the Circular Hough Transform through imfindcircles. However, this requires at least version R2012a, so if you don't have it, this won't work.
For the sake of completeness, I'll assume you have it. This is a good method if you want to leave the image untouched. If you don't know what the Hough Transform is, it is a method for finding straight lines in an image. The circular Hough Transform is a special case that aims to find circles in the image.
The added advantage of the circular Hough Transform is that it is able to detect partial circles in an image. This means that those regions in your image that are connected, we can detect them as separate circles. How you'd call imfindcircles is in the following fashion:
[centers,radii] = imfindcircles(A, radiusRange);
A would be your binary image of objects, and radiusRange is a two-element array that specifies the minimum and maximum radii of the circles you want to detect in your image. The outputs are:
centers: A N x 2 array that tells you the (x,y) co-ordinates of each centre of a circle that is detected in the image - x being the column and y being the row.
radii: For each corresponding centre detected, this also gives the radius of each circle detected. This is a N x 1 array.
There are additional parameters to imfindcircles that you may find useful, such as the Sensitivity. A higher sensitivity means that it is able to detect circular shapes that are more non-uniform, such as what you are showing in your image. They aren't perfect circles, but they are round shapes. The default sensitivity is 0.85. I set it to 0.9 to get good results. Also, playing around with your image, I found that the radii ranged from 50 pixels to 150 pixels. Therefore, I did this:
im = im2bw(imread('http://dennlinger.bplaced.net/t06-4.jpg'));
[centers,radii] = imfindcircles(im, [50 150], 'Sensitivity', 0.9);
The first line of code reads in your image directly from StackOverflow. I also convert this to logical or true black and white as the image you uploaded is of type uint8. This image is stored in im. Next, we call imfindcircles in the method that we described.
Now, if we want to visualize the detected circles, simply use imshow to show your image, then use the viscircles to draw the circles in the image.
imshow(im);
viscircles(centers, radii, 'DrawBackgroundCircle', false);
viscircles by default draws the circles with a white background over the contour. I want to disable this because your image has white circles and I don't want to show false contouring. This is what I get with the above code:
Therefore, what you can take away from this is the centers and radii variables. centers will give you the centre of each detected circle while radii will tell you what the radii is for each circle.
Now, if you want to simulate what regionprops is doing, we can iterate through all of the detected circles and physically draw them onto a 2D map where each circle would be labeled by an ID number. As such, we can do something like this:
[X,Y] = meshgrid(1:size(im,2), 1:size(im,1));
IDs = zeros(size(im));
for idx = 1 : numel(radii)
r = radii(idx);
cen = centers(idx,:);
loc = (X - cen(1)).^2 + (Y - cen(2)).^2 <= r^2;
IDs(loc) = idx;
end
We first define a rectangular grid of points using meshgrid and initialize an IDs array of all zeroes that is the same size as the image. Next, for each pair of radii and centres for each circle, we define a circle that is centered at this point that extends out for the given radius. We then use these as locations into the IDs array and set it to a unique ID for that particular circle. The result of IDs will be that which resembles the output of bwlabel. As such, if you want to extract the locations of where the idx circle is, you would do:
cir = IDs == idx;
For demonstration purposes, this is what the IDs array looks like once we scale the IDs such that it fits within a [0-255] range for visibility:
imshow(IDs, []);
Therefore, each shaded circle of a different shade of gray denotes a unique circle that was detected with imfindcircles.
However, the shades of gray are probably a bit ambiguous for certain coins as this blends into the background. Another way that we could visualize this is to apply a different colour map to the IDs array. We can try using the cool colour map, with the total number of colours to be the number of unique circles + 1 for the background. Therefore, we can do something like this:
cmap = cool(numel(radii) + 1);
RGB = ind2rgb(IDs, cmap);
imshow(RGB);
The above code will create a colour map such that each circle gets mapped to a unique colour in the cool colour map. The next line applies a mapping where each ID gets associated with a colour with ind2rgb and we finally show the image.
This is what we get:
Edit: the following solution is more adequate to scenarios where one does not require fitting the exact circumferences, although simple heuristics could be used to approximate the radii of the coins in the original image based on the centers found in the eroded one.
Assuming you have access to the Image Processing toolbox, try imerode on your original black and white image. It will apply an erosion morphological operator to your image. In fact, the Matlab webpage with the documentation of that function has an example strikingly similar to your problem/image and they use a disk structure.
Run the following code (based on the example linked above) assuming the image you submitted is called ima.jpg and is local to the code:
ima=imread('ima.jpg');
se = strel('disk',50);
eroded = imerode(ima,se);
imshow(eroded)
and you will see the image that follows as output. After you do this, you can use bwlabel to label the connected components and compute whatever properties you may want, for example, count the number of coins or detect their centers.

Segmenting 3D shapes out of thick "lines"

I am looking for a method that looks for shapes in 3D image in matlab. I don't have a real 3D sample image right now; in fact, my 3D image is actually a set of quantized 2D images.
The figure below is what I am trying to accomplish:
Although the example figure above is a 2D image, please understand that I am trying to do this in 3D. The input shape has these "tentacles", and I have to look for irregular shapes among them. The size of the tentacle from one point to another can change around but at "consistent and smooth" pace - that is it can be big at first, then gradually smaller later. But if suddenly, the shape just gets bigger not so gradually, like the red bottom right area in the figure above, then this is one of the volume of interests. Note that these shapes have more tendency to be rounded and spherical, but some of them are completely arbitrary and random.
I've tried the following methods so far:
Erode n times and dilate n times: given that the "tentacles" are always smaller than the volume of interest, this method will work as long as the volume is not too small. And, we need to have a mechanism to deal with thicker portion of the tentacle that becomes false positive somehow.
Hough Transform: although I have been suggested this method earlier (from Segmenting circle-like shapes out of Binary Image), I see that it works for some of the more rounded shape cases, but at the same time, more difficult cases such that of less-rounded, distorted, and/or arbitrary shapes can slip through this method.
Isosurface: because of my input is a set of 2D quantized images, using an isosurface allow me to reconstruct image in 3D and see things clearer. However, I'm not sure what could be done further in this case.
So can anyone suggests some other techniques for segmenting such shape out of these "tentacles"?
Every point on your image has the property that it is either part of the tentacle, or part of the volume of interest. If it is unknown apriori what the expected girth of the tentacle is, then 1 wont work because we won't be able to set n. However, we know that the n that erases the tentacle is smaller than the n that erases the node. You can for each point replace it with an integer representing the distance to the edge. Effectively, this can be done via successive single pixel erosion, and replacing each pixel with the count of the iteration at which it was erased. Lets call this the thickness at the pixel, but my rusty old mind tells me that there was a term of art for this.
Now we want to search for regions that have a higher-than-typical morphological distance from the boundary. I would do this by first skeletonizing the image (http://www.mathworks.com/help/toolbox/images/ref/bwmorph.html) and then searching for local maxima of the thickness along the skeleton. These are points on the skeleton where the thickness is larger than the neighbor points.
Finally I would sort the local maxima by the thickness, a threshold on which should help to separate the volumes of interest from the false positives.

Matlab: find major axis of binary area

the output of some processing consists of a binary map with several connected areas.
The objective is, for each area, to compute and draw on the image a line crossing the area on its longest axis, but not extending further. It is very important that the line lies just inside the area, therefore ellipse fitting is not very good.
Any hint on how to do achieve this result in an efficient way?
If you have the image processing toolbox you can use regionprops which will give you several standard measures of any binary connected region. This includes
You can also get the tightest rectangular bounding box, centroid, perimeter, orientation. These will all help you in ellipse fitting.
Depending on how you would like to draw your lines, the regionprops function also returns the length for major and minor axes in 2-D connected regions and does it on a per-connected-region basis, giving you a vector of axis lengths. If you specify 4 neighbor connected you are fairly sure that the length will be exclusively within the connected region. But this is not guaranteed since `regionprops' calculates major axis length of an ellipse that has the same normalized second central moment as the connected region.
My first inclination would be to treat the pixels as 2D points and use principal components analysis. PCA will give you the major axis of each region (princomp if you have the stat toolbox).
Regarding making line segments and not lines, not knowing anything about the shape of these regions, an efficient method doesn't occur to me. Assuming the region could have any arbitrary shape, you could just trace along each line until you reach the edge of the region. Then repeat in the other direction.
I assumed you already have the binary image divided into regions. If this isn't true you could use bwlabel (if the regions aren't touching) or k-means (if they are) first.