Matlab: separate connected components - matlab

I was working on my image processing problem with detecting coins.
I have some images like this one here:
and wanted to separate the falsely connected coins.
We already tried the watershed method as stated on the MATLAB-Homepage:
the-watershed-transform-strategies-for-image-segmentation.html
especially since the first example is exactly our problem.
But instead we get a somehow very messed up separation as you can see here:
We already extracted the area of the coin using the regionprops Extrema parameter and casting the watershed only on the needed area.
I'd appreciate any help with the problem or even another method of getting it separated.

If you have the Image Processing Toolbox, I can also suggest the Circular Hough Transform through imfindcircles. However, this requires at least version R2012a, so if you don't have it, this won't work.
For the sake of completeness, I'll assume you have it. This is a good method if you want to leave the image untouched. If you don't know what the Hough Transform is, it is a method for finding straight lines in an image. The circular Hough Transform is a special case that aims to find circles in the image.
The added advantage of the circular Hough Transform is that it is able to detect partial circles in an image. This means that those regions in your image that are connected, we can detect them as separate circles. How you'd call imfindcircles is in the following fashion:
[centers,radii] = imfindcircles(A, radiusRange);
A would be your binary image of objects, and radiusRange is a two-element array that specifies the minimum and maximum radii of the circles you want to detect in your image. The outputs are:
centers: A N x 2 array that tells you the (x,y) co-ordinates of each centre of a circle that is detected in the image - x being the column and y being the row.
radii: For each corresponding centre detected, this also gives the radius of each circle detected. This is a N x 1 array.
There are additional parameters to imfindcircles that you may find useful, such as the Sensitivity. A higher sensitivity means that it is able to detect circular shapes that are more non-uniform, such as what you are showing in your image. They aren't perfect circles, but they are round shapes. The default sensitivity is 0.85. I set it to 0.9 to get good results. Also, playing around with your image, I found that the radii ranged from 50 pixels to 150 pixels. Therefore, I did this:
im = im2bw(imread('http://dennlinger.bplaced.net/t06-4.jpg'));
[centers,radii] = imfindcircles(im, [50 150], 'Sensitivity', 0.9);
The first line of code reads in your image directly from StackOverflow. I also convert this to logical or true black and white as the image you uploaded is of type uint8. This image is stored in im. Next, we call imfindcircles in the method that we described.
Now, if we want to visualize the detected circles, simply use imshow to show your image, then use the viscircles to draw the circles in the image.
imshow(im);
viscircles(centers, radii, 'DrawBackgroundCircle', false);
viscircles by default draws the circles with a white background over the contour. I want to disable this because your image has white circles and I don't want to show false contouring. This is what I get with the above code:
Therefore, what you can take away from this is the centers and radii variables. centers will give you the centre of each detected circle while radii will tell you what the radii is for each circle.
Now, if you want to simulate what regionprops is doing, we can iterate through all of the detected circles and physically draw them onto a 2D map where each circle would be labeled by an ID number. As such, we can do something like this:
[X,Y] = meshgrid(1:size(im,2), 1:size(im,1));
IDs = zeros(size(im));
for idx = 1 : numel(radii)
r = radii(idx);
cen = centers(idx,:);
loc = (X - cen(1)).^2 + (Y - cen(2)).^2 <= r^2;
IDs(loc) = idx;
end
We first define a rectangular grid of points using meshgrid and initialize an IDs array of all zeroes that is the same size as the image. Next, for each pair of radii and centres for each circle, we define a circle that is centered at this point that extends out for the given radius. We then use these as locations into the IDs array and set it to a unique ID for that particular circle. The result of IDs will be that which resembles the output of bwlabel. As such, if you want to extract the locations of where the idx circle is, you would do:
cir = IDs == idx;
For demonstration purposes, this is what the IDs array looks like once we scale the IDs such that it fits within a [0-255] range for visibility:
imshow(IDs, []);
Therefore, each shaded circle of a different shade of gray denotes a unique circle that was detected with imfindcircles.
However, the shades of gray are probably a bit ambiguous for certain coins as this blends into the background. Another way that we could visualize this is to apply a different colour map to the IDs array. We can try using the cool colour map, with the total number of colours to be the number of unique circles + 1 for the background. Therefore, we can do something like this:
cmap = cool(numel(radii) + 1);
RGB = ind2rgb(IDs, cmap);
imshow(RGB);
The above code will create a colour map such that each circle gets mapped to a unique colour in the cool colour map. The next line applies a mapping where each ID gets associated with a colour with ind2rgb and we finally show the image.
This is what we get:

Edit: the following solution is more adequate to scenarios where one does not require fitting the exact circumferences, although simple heuristics could be used to approximate the radii of the coins in the original image based on the centers found in the eroded one.
Assuming you have access to the Image Processing toolbox, try imerode on your original black and white image. It will apply an erosion morphological operator to your image. In fact, the Matlab webpage with the documentation of that function has an example strikingly similar to your problem/image and they use a disk structure.
Run the following code (based on the example linked above) assuming the image you submitted is called ima.jpg and is local to the code:
ima=imread('ima.jpg');
se = strel('disk',50);
eroded = imerode(ima,se);
imshow(eroded)
and you will see the image that follows as output. After you do this, you can use bwlabel to label the connected components and compute whatever properties you may want, for example, count the number of coins or detect their centers.

Related

How to detect all the rectangles in an image?

In the following image, all the rectangles are a little bit deformed due to power leakage effect. I want to detect all the rectangles and obtain the positions of the rectangles. If the number of rectangles are arbitrary (maybe unknown), how to detect?
Is there a way to detect all rectangles with MATLAB?
The rectangles are against a black background so the easiest way to likely do this is to consider the image as a simple 2D array with values from 0 to whatever (assuming 0 is black).
You can then write and statement that says while array value is above 0 output the array coords in x and y to a new array. Once you have done this you can then write another script to find the corners of the boxes by looking to see whether each coordinate could be equal to another coordinate if you added or subtracted 1, this would give you the number of boxes and the coordinates in each box.
Then you should be able to find the centre from there.
You need to perform threshold of the image with some level. And perform regionprops(). Read the MATLAB help Documentation.
Also refer the MATLAB code below.
clc
MainImg = imread('ifVsy.jpg');
BinImg = im2bw(MainImg,graythresh(MainImg));
Objects = regionprops(BinImg,'centroid');
AllCenters = cat(1, Objects.Centroid);
imshow(MainImg);
hold on
plot(AllCenters(:,1),AllCenters(:,2),'r*');
hold off

Separate two overlapping circles in an image using MATLAB

How do I separate the two connected circles in the image below, using MATLAB? I have tried using imerode, but this does not give good results. Eroding does not work, because in order to erode enough to separate the circles, the lines disappear or become mangled. In other starting pictures, a circle and a line overlap, so isolating the overlapping objects won't work either.
The image shows objects identified by bwboundaries, each object painted a different color. As you can see, the two light blue circles are joined, and I want to disjoin them, producing two separate circles. Thanks
I would recommend you use the Circular Hough Transform through imfindcircles. However, you need version 8 of the Image Processing Toolbox, which was available from version R2012a and onwards. If you don't have this, then unfortunately this won't work :(... but let's go with the assumption that you do have it. However, if you are using something older than R2012a, Dev-iL in his/her comment above linked to some code on MATLAB's File Exchange on an implementation of this, most likely created before the Circular Hough Transform was available: http://www.mathworks.com/matlabcentral/fileexchange/9168-detect-circles-with-various-radii-in-grayscale-image-via-hough-transform/
This is a special case of the Hough Transform where you are trying to find circles in your image rather than lines. The beauty with this is that you are able to find circles even when the circle is partially completed or overlapping.
I'm going to take the image that you provided above and do some post-processing on it. I'm going to convert the image to binary, and remove the border, which is white and contains the title. I'm also going to fill in any holes that result so that all of the objects are filled in with solid white. There is also some residual quantization noise after I do this step, so I'm going to a small opening with a 3 x 3 square element. After, I'm going to close the shapes with a 3 x 3 square element, as I see that there are noticeable gaps in the shapes. Therefore:
Therefore, directly reading in your image from where you've posted it:
im = imread('http://s29.postimg.org/spkab8oef/image.jpg'); %// Read in the image
im_gray = im2double(rgb2gray(im)); %// Convert to grayscale, then [0,1]
out = imclearborder(im_gray > 0.6); %// Threshold using 0.6, then clear the border
out = imfill(out, 'holes'); %// Fill in the holes
out = imopen(out, strel('square', 3));
out = imclose(out, strel('square', 3));
This is the image I get:
Now, apply the Circular Hough Transform. The general syntax for this is:
[centres, radii, metric] = imfindcircles(img, [start_radius, end_radius]);
img would be the binary image that contains your shapes, start_radius and end_radius would be the smallest and largest radius of the circles you want to find. The Circular Hough Transform is performed such that it will find any circles that are within this range (in pixels). The outputs are:
centres: Which returns the (x,y) positions of the centres of each circle detected
radii: The radius of each circle
metric: A measure of purity of the circle. Higher values mean that the shape is more probable to be a circle and vice-versa.
I searched for circles having a radius between 30 and 60 pixels. Therefore:
[centres, radii, metric] = imfindcircles(out, [30, 60]);
We can then demonstrate the detected circles, as well as the radii by a combination of plot and viscircles. Therefore:
imshow(out);
hold on;
plot(centres(:,1), centres(:,2), 'r*'); %// Plot centres
viscircles(centres, radii, 'EdgeColor', 'b'); %// Plot circles - Make edge blue
Here's the result:
As you can see, even with the overlapping circles towards the top, the Circular Hough Transform was able to detect two distinct circles in that shape.
Edit - November 16th, 2014
You wish to ensure that the objects are separated before you do bwboundaries. This is a bit tricky to do. The only way I can see you do this is if you don't even use bwboundaries at all and do this yourself. I'm assuming you'll want to analyze each shape's properties by themselves after all of this, so what I suggest you do is iterate through every circle you have, then place each circle on a new blank image, do a regionprops call on that shape, then append it to a separate array. You can also keep track of all of the circles by having a separate array that adds the circles one at a time to this array.
Once you've finished with all of the circles, you'll have a structure array that contains all of the measured properties for all of the measured circles you have found. You would use the array that contains only the circles from above, then use these and remove them from the original image so you get just the lines. You'd then call one more regionprops on this image to get the information for the lines and append this to your final structure array.
Here's the first part of the procedure I outlined above:
num_circles = numel(radii); %// Get number of circles
struct_reg = []; %// Save the shape analysis per circle / line here
%// For creating our circle in the temporary image
[X,Y] = meshgrid(1:size(out,2), 1:size(out,1));
%// Storing all of our circles in this image
circles_img = false(size(out));
for idx = 1 : num_circles %// For each circle we have...
%// Place our circle inside a temporary image
r = radii(idx);
cx = centres(idx,1); cy = centres(idx,2);
tmp = (X - cx).^2 + (Y - cy).^2 <= r^2;
% // Save in master circle image
circles_img(tmp) = true;
%// Do regionprops on this image and save
struct_reg = [struct_reg; regionprops(tmp)];
end
The above code may be a bit hard to swallow, but let's go through it slowly. I first figure out how many circles we have, which is simply looking at how many radii we have detected. I keep a separate array called struct_reg that will append a regionprops struct for each circle and line we have in our image. I use meshgrid to determine the (X,Y) co-ordinates with respect to the image containing our shapes so that I can draw one circle onto a blank image at each iteration. To do this, you simply need to find the Euclidean distance with respect to the centre of each circle, and set the pixels to true only if that location has its distance less than r. After doing this operation, you will have created only one circle and filtered all of them out. You would then use regionprops on this circle, add it to our circles_img array, which will only contain the circles, then continue with the rest of the circles.
At this point, we will have saved all of our circles. This is what circles_img looks like so far:
You'll notice that the circles drawn are clean, but the actual circles in the original image are a bit jagged. If we tried to remove the circles with this clean image, you will get some residual pixels along the border and you won't completely remove the circles themselves. To illustrate what I mean, this is what your image looks like if I tried to remove the circles with circles_img by itself:
... not good, right?
If you want to completely remove the circles, then do a morphological reconstruction through imreconstruct where you can use this image as the seed image, and specify the original image to be what we're working on. The job of morphological reconstruction is essentially a flood fill. You specify seed pixels, and an image you want to work on, and the job of imreconstruct is from these seeds, flood fill with white until we reach the boundaries of the objects that the seed pixels resided in. Therefore:
out_circles = imreconstruct(circles_img, out);
Therefore, we get this for our final reconstructed circles image:
Great! Now, use this and remove the circles from the original image. Once you do this, run regionprops again on this final image and append to your struct_reg variable. Obviously, save a copy of the original image before doing this:
out_copy = out;
out_copy(out_circles) = false;
struct_reg = [struct_reg; regionprops(out_copy)];
Just for sake of argument, this is what the image looks like with the circles removed:
Now, we have analyzed all of our shapes. Bear in mind I did the full regionprops call because I don't know exactly what you want in your analysis... so I just decided to give you everything.
Hope this helps!
erosion is the way to go. You should probably use a larger structuring element.
How about
1 erode
2 detect your objects
3 dilate each object for itself using the same structuring element

Matlab Solid Circles

What we want is to draw several solid circles at random locations, with random gray scale colors, on a dark gray background. How can we do this? Also, if the circles overlap, we need them to change color in the overlapping part.
Since this is an assignment for school, we are not looking for ready-made answers, but for a guide which tools to use in MATLAB!
Here's a checklist of things I would investigate if you want to do this properly:
Figure out how to draw circles in MATLAB. Because you don't have the Image Processing Toolbox (see comments), you will probably have to make a function yourself. I'll give you some starter code:
function [xout, yout] = circle(x,y,r,rows,cols)
[X,Y] = meshgrid(x-r:x+r, y-r:y+r);
ind = find(X.^2 + Y.^2 <= r^2 & X >= 1 & X <= cols & Y >= 1 & Y <= rows);
xout = X(ind);
yout = Y(ind);
end
What the above function does is that it takes in an (x,y) co-ordinate as well as the radius of
the circle. You also will need to specify how many rows and how many columns you want in your image. The reason why is because this function will prevent giving you co-ordinates that are out of bounds in the image that you can't draw. The final output of this will give you co-ordinates of all values inside and along the boundary of the circle. These co-ordinates will already be in integer so there's no need for any rounding and such things. In addition, these will perfectly fit when you're assigning these co-ordinates to locations in your image. One caveat to note is that the co-ordinates assume an inverted Cartesian. This means that the top left corner is the origin (0,0). x values increase from left to right, and y values increase from top to bottom. You'll need to keep this convention in mind when drawing circles in your image.
Take a look at the rand class of functions. rand will generate random values for you and so you can use these to generate a random set of co-ordinates - each of these co-ordinates can thus serve as your centre. In addition, you can use this class of functions to help you figure out how big you want your circles and also what shade of gray you want your circles to be.
Take a look at set operations (logical AND, logical OR) etc. You can use a logical AND to find any circles that are intersecting with each other. When you find these areas, you can fill each of these areas with a different shade of gray. Again, the rand functions will also be of use here.
As such, here is a (possible) algorithm to help you do this:
Take a matrix of whatever size you want, and initialize all of the elements to dark gray. Perhaps an intensity of 32 may work.
Generate a random set of (x,y) co-ordinates, a random set of radii and a random set of intensity values for each circle.
For each pair of circles, check to see if there are any co-ordinates that intersect with each other. If there are such co-ordinates, generate a random shade of gray and fill in these co-ordinates with this new shade of gray. A possible way to do this would be to take each set of co-ordinates of the two circles and draw them on separate temporary images. You would then use the logical AND operator to find where the circles intersect.
Now that you have your circles, you can plot them all. Take a look at how plot works with plotting matrices. That way you don't have to loop through all of the circles as it'll be inefficient.
Good luck!
Let's get you home, shall we? Now this stays away from the Image Processing Toolbox functions, so hopefully these must work for you too.
Code
%%// Paramters
numc = 5;
graph_size = [300 300];
max_r = 100;
r_arr = randperm(max_r/2,numc)+max_r/2
cpts = [randperm(graph_size(1)-max_r,numc)' randperm(graph_size(2)-max_r,numc)']
color1 = randperm(155,numc)+100
prev = zeros(graph_size(1),graph_size(2));
for k = 1:numc
r = r_arr(k);
curr = zeros(graph_size(1),graph_size(2));
curr(cpts(k,1):cpts(k,1)+r-1,cpts(k,2):cpts(k,2)+r-1)= color1(k)*imcircle(r);
common_blob = prev & curr;
curr = prev + curr;
curr(common_blob) = min(color1(1),color1(2))-50;
prev = curr;
end
figure,imagesc(curr), colormap gray
%// Please note that the code uses a MATLAB file-exchange tool called
%// imcircle, which is available at -
%// http://www.mathworks.com/matlabcentral/fileexchange/128-imcircle
Screenshot of a sample run
As you said that your problem is an assignment for school I will therefore not tell you exactly how to do it but what you should look at.
you should be familiar how 2d arrays (matrices) work and how to plot them using image/imagesc/imshow ;
you should look at the strel function ;
you should look at the rand/randn function;
such concepts should be enough for the assignment.

Rounded corner rectangle coordinate representation

Simple rounded corner rectangle code in Matlab can be written as follows.
rectangle('Position',[0,-1.37/2,3.75,1.37],...
'Curvature',[1],...
'LineWidth',1,'LineStyle','-')
daspect([1,1,1])
How to get the x and y coordinates arrays of this figure?
To get the axes units boundaries, do:
axisUnits = axis(axesHandle) % axesHandle could be gca
axisUnits will be an four elements array, with the following syntax: [xlowlim xhighlim ylowlim yhighlim], it will also contain the zlow and zhigh for 3-D plots.
But I think that is not what you need to know. Checking the matlab documentation for the rectangle properties, we find:
Position four-element vector [x,y,width,height]
Location and size of rectangle. Specifies the location and size of the
rectangle in the data units of the axes. The point defined by x, y
specifies one corner of the rectangle, and width and height define the
size in units along the x- and y-axes respectively.
It is also documented on the rectangle documentation:
rectangle('Position',[x,y,w,h]) draws the rectangle from the point x,y
and having a width of w and a height of h. Specify values in axes data
units.
See if this illustrate what you want. You have an x axis that goes from −100 to 100 and y axis that goes from 5 to 15. Suppose you want to put a rectangle from −30 to −20 in x and 8 to 10 in y.
rectangle('Position',[-30,8,10,2]);
As explained by the comments there appears to be no direct way to query the figure created by rectangle and extract x/y coordinates. On the other hand, I can think of two simple strategies to arrive at coordinates that will closely reproduce the curve generated with rectangle:
(1) Save the figure as an image (say .png) and process the image to extract points corresponding to the curve. Some degree of massaging is necessary but this is relatively straightforward if blunt and I expect the code to be somewhat slow at execution compared to getting data from an axes object.
(2) Write your own code to draw a rectangle with curved edges. While recreating precisely what matlab draws may not be so simple, you may be satisfied with your own version.
Whether you choose one of these approaches boils down to (a) what speed of execution you consider acceptable (b) how closely you need to replicate what rectangle draws on screen (c) whether you have image processing routines, say for reading an image file.
Edit
If you have the image processing toolbox you can arrive at a set of points representing the rectangle as follows:
h=rectangle('Position',[0,-1.37/2,3.75,1.37],...
'Curvature',[1],...
'LineWidth',1,'LineStyle','-')
daspect([1,1,1])
axis off
saveas(gca,'test.png');
im = imread('test.png');
im = rgb2gray(im);
figure, imshow(im)
Note that you will still need to apply a threshold to pick the relevant points from the image and then transform the coordinate system and rearrange the points in order to display properly as a connected set. You'll probably also want to tinker with resolution of the initial image file or apply image processing functions to get a smooth curve.

Segmenting a grayscale image

I am having trouble achieving the correct segmentation of a grayscale image:
The ground truth, i.e. what I would like the segmentation to look like, is this:
I am most interested in the three components within the circle. Thus, as you can see, I would like to segment the top image into three components: two semi-circles, and a rectangle between them.
I have tried various combinations of dilation, erosion, and reconstruction, as well as various clustering algorithms, including k-means, isodata, and mixture of gaussians--all with varying degrees of success.
Any suggestions would be appreciated.
Edit: here is the best result I've been able to obtain. This was obtained using an active contour to segment the circular ROI, and then applying isodata clustering:
There are two problems with this:
The white halo around the bottom-right cluster, belonging to the top-left cluster
The gray halo around both the top-right and bottom-left cluster, belonging to the center cluster.
Here's a starter...
use circular Hough transform to find the circular part. For that I initially threshold the image locally.
im=rgb2gray(imread('Ly7C8.png'));
imbw = thresholdLocally(im,[2 2]); % thresold localy with a 2x2 window
% preparing to find the circle
props = regionprops(imbw,'Area','PixelIdxList','MajorAxisLength','MinorAxisLength');
[~,indexOfMax] = max([props.Area]);
approximateRadius = props(indexOfMax).MajorAxisLength/2;
radius=round(approximateRadius);%-1:approximateRadius+1);
%find the circle using Hough trans.
h = circle_hough(edge(imbw), radius,'same');
[~,maxIndex] = max(h(:));
[i,j,k] = ind2sub(size(h), maxIndex);
center.x = j; center.y = i;
figure;imagesc(im);imellipse(gca,[center.x-radius center.y-radius 2*radius 2*radius]);
title('Finding the circle using Hough Trans.');
select only what's inside the circle:
[y,x] = meshgrid(1:size(im,2),1:size(im,1));
z = (x-j).^2+(y-i).^2;
f = (z<=radius^2);
im=im.*uint8(f);
EDIT:
look for a place to start threshold the image to segment it by looking at the histogram, finding it's first local maxima, and iterating from there until 2 separate segments are found, using bwlabel:
p=hist(im(im>0),1:255);
p=smooth(p,5);
[pks,locs] = findpeaks(p);
bw=bwlabel(im>locs(1));
i=0;
while numel(unique(bw))<3
bw=bwlabel(im>locs(1)+i);
i=i+1;
end
imagesc(bw);
The middle part can now be obtained by taking out the two labeled parts from the circle, and what is left will be the middle part (+some of the halo)
bw2=(bw<1.*f);
but after some median filtering we get something more reasonble
bw2= medfilt2(medfilt2(bw2));
and together we get:
imagesc(bw+3*bw2);
The last part is a real "quick and dirty", I'm sure that with the tools you already used you'll get better results...
One can also obtain an approximate result using the watershed transformation. This is the watershed on the inverted image -> watershed(255-I) Here is an example result:
Another Simple method is to perform a morphological closing on the original image with a disc structuring element (one can perform multiscale closing for granulometries) and then obtain the full circle. After this extracting the circle is and components withing is easier.
se = strel('disk',3);
Iclo = imclose(I, se);% This closes open circular cells.
Ithresh = Iclo>170;% one can locate this threshold automatically by histogram modes (if you know apriori your cell structure.)
Icircle = bwareaopen(Ithresh, 50); %to remove small noise components in the bg
Ithresh2 = I>185; % This again needs a simple histogram.