Solving nonlinear FEM in MATLAB - matlab

I try to solve a heat diffusion problem on tetrahedral finite elements with nodal heat sources, which depend on the solution vector, in MATLAB. The nonlinear equation system looks like this:
BU' + AU = q(T)
with B being the heat capactiy matrix, A being the conductivity matrix, q being the source terms and U being the Temperature. I use an Adams-Bashforth/Trapezoid Rule predictor-corrector scheme with a Picard iteration followed by a time step control. The temperature for the source terms is evaluated exactly between the last time step's temperature and the predictor's temperature. Here is a simplified version of the predictor-corrector code. The calculation of the sources is a function.
% predictor
K0 = t(n)-t(n-1);
Upre(dirichlet) = u_d_t(coordinates(dirichlet,:));
Upre(FreeNodes) = U(FreeNodes,n) + (dt/2)*((2+dt/K0)*U_dt(FreeNodes,3) - (dt/K0)*U_dt(FreeNodes,1)); % predictor step
Uguess = Upre; % save as initial guess for Picard iteration
% corrector with picard iteration
while res >= picard_tolerance
T_theta = Uguess*theta + (1-theta)*U(:,n);
b = q(T_theta);
% Building right-hand side vector (without Dirichlet boundary conditions yet)
rhs = ((2/dt)*B*U(:,n) + B*U_dt(:,1))+b;
% Applying Dirichlet Boundary Conditions to the Solution Vector
Ucor(dirichlet) = u_d_t(coordinates(dirichlet,:));
rhs = rhs - ((2/dt)*B+A)*Ucor;
% Solving the linearized system using the backslash operator
% P*U(n+1) = f(Un) => U(n+1) = P\f(Un)
Ucor(FreeNodes) = ((2/dt)*B(FreeNodes,FreeNodes)+A(FreeNodes,FreeNodes))\rhs(FreeNodes);
res = norm(Uguess-Ucor);
Uguess = Ucor;
U(:,n+1) = Ucor;
end
As you can see I use the backslash operator to solve the system. The non-linearity of the system should not be to bad. However, with increasing time steps the picard method converges more slowly and eventually stops to converge altogether. I need much bigger time steps though, so I put the whole corrector step into a function and tried to solve it with fsolve instead to see if I achieve quicker convergence. Unfortunately fsolve seems to never even finish the first time step. I suppose I did not configure the options for fsolve correctly. Can anyone tell me, how to configure fsolve for large sparse nonlinear systems ( We are talking about thousands upt to hundredthousands of equations). Or is there maybe a better solution than fsolve for this problem? Help and - as I am not an expert or computational engineer - explicit advice is greatly appreciated!

In my experience, non-linear equations are solved by linearizing to solve for a temperature increment and iterating to convergence using something like Newton Raphson solver. So if you're using an implicit integration schema, you have an outer time step solution with an inner non-linear solution for the temperature step over the time step.

Related

Speed up calculation in Physics simulation in Matlab

I am working on a MR-physic simulation written in Matlab which simulates bloch's equations on an defined object. The magnetisation in the object is updated every time-step with the following functions.
function Mt = evolveMtrans(gamma, delta_B, G, T2, Mt0, delta_t)
% this function calculates precession and relaxation of the
% transversal component, Mt, of M
delta_phi = gamma*(delta_B + G)*delta_t;
Mt = Mt0 .* exp(-delta_t*1./T2 - 1i*delta_phi);
end
This function is a very small part of the entire code but is called upon up to 250.000 times and thus slows down the code and the performance of the entire simulation. I have thought about how I can speed up the calculation but haven't come up with a good solution. There is one line that is VERY time consuming and stands for approximately 50% - 60% of the overall simulation time. This is the line,
Mt = Mt0 .* exp(-delta_t*1./T2 - 1i*delta_phi);
where
Mt0 = 512x512 matrix
delta_t = a scalar
T2 = 512x512 matrix
delta_phi = 512x512 matrix
I would be very grateful for any suggestion to speed up this calculation.
More info below,
The function evovleMtrans is called every timestep during the simulation.
The parameters that are used for calling the function are,
gamma = a constant. (gyramagnetic constant)
delta_B = the magnetic field value
G = gradientstrength
T2 = a 512x512 matrix with T2-values for the object
Mstart.r = a 512x512 matrix with the values M.r had the last timestep
delta_t = a scalar with the difference in time since the last calculated M.r
The only parameters of these that changed during the simulation are,
G, Mstart.r and delta_t. The rest do not change their values during the simulation.
The part below is the part in the main code that calls the function.
% update phase and relaxation to calcTime
delta_t = calcTime - Mstart_t;
delta_B = (d-d0)*B0;
G = Sq.Gx*Sq.xGxref + Sq.Gz*Sq.zGzref;
% Precession around B0 (z-axis) and B1 (+-x-axis or +-y-axis)
% is defined clock-wise in a right hand system x, y, z and
% x', y', z (see the Bloch equation, Bloch 1946 and Levitt
% 1997). The x-axis has angle zero and the y-axis has angle 90.
% For flipping/precession around B1 in the xy-plane, z-axis has
% angle zero.
% For testing of precession direction:
% delta_phi = gamma*((ones(size(d)))*1e-6*B0)*delta_t;
M.r = evolveMtrans(gamma, delta_B, G, T2, Mstart.r, delta_t);
M.l = evolveMlong(T1, M0.l, Mstart.l, delta_t);
This is not a surprise.
That "single line" is a matrix equation. It's really 1,024 simultaneous equations.
Per Jannick, that first term means element-wise division, so "delta_t/T[i,j]". Multiplying a matrix by a scalar is O(N^2). Matrix addition is O(N^2). Evaluating exponential of a matrix will be O(N^2).
I'm not sure if I saw a complex argument in there as well. Does that mean complex matricies with real and imaginary entries? Does your equation simplify to real and imaginary parts? That means twice the number of computations.
Your best hope is to exploit symmetry as much as possible. If all your matricies are symmetric, you cut your calculations roughly in half.
Use parallelization if you can.
Algorithm choice can make a big difference, too. If you're using explicit Euler integration, you may have time step limitations due to stability concerns. Is that why you have 250,000 steps? Maybe a larger time step is possible with a more stable integration schema. Think about a higher order adaptive scheme with error correction, like 5th order Runge Kutta.
There are several possibilities to improve the speed of the code but all that I see come with a caveat.
Numerical ode integration
The first possibility would be to change your analytical solution by numerical differential equation solver. This has several advantages
The analytical solution includes the complex exponential function, which is costly to calculate, while the differential equation contains only multiplication and addition. (d/dt u = -a u => u=exp(-at))
There are plenty of built-in solvers for matlab available and they are typically pretty fast (e.g. ode45). The built-ins however all use a variable step size. This improves speed and accuracy but would be a problem if you really need a fixed equally spaced grid of time points. Here are unofficial fixed step solvers.
As a start you could also try to use just an euler step by replacing
M.r = evolveMtrans(gamma, delta_B, G, T2, Mstart.r, delta_t);
by
delta_phi = gamma*(delta_B + G)*t_step;
M.r += M.r .* (1-t_step*1./T2 - 1i*delta_phi);
You can then further improve that by precalculating all constant values, e.g. one_over_T1=1/T1, moving delta_phi out of the loop.
Caveat:
You are bound to a minimum step size or the accuracy suffers. Therefore this is only a good idea if you time-spacing is quite fine.
Less points in time
You should carfully analyze whether you really need so many points in time. It seems somewhat puzzling to me that you need so many points. As you know the full analytical solution you can freely choose how to sample the time and maybe use this to your advantage.
Going fortran
This might seem like a grand step but in my experience basic (simple loops, matrix operations etc.) matlab code can be relatively easily translated to fortran line-by-line. This would be especially helpful in addition to my first point. If you still want to use the full analytical solution probably there is not much to gain here because exp is already pretty fast in matlab.

Matlab ode15s: postive dx/dt, decreasing x(t)

In my script, I call the ODE solver ode15s which solves a system of 9 ODE's. A simplified structure of the code:
[t, x] = ode15s(#odefun,tini:tend,options)
...
function dx = odefun(t,x)
r1=... %rate equation 1, dependent on x(1) and x(3) for example
r2=... %rate equation 2
...
dx(1) = r1+r2-...
dx(2) = ...
...
dx(9) = ...
end
When reviewing the results I was curious why the profile of one state variable was increasing at a certain range. In order to investigate this, I used conditional debugging within the ode function so I could check all the rates and all the dx(i)/dt equations.
To my big surprise, I found out that the differential equation of the decreasing state variable was positive. So, I simulated multiple rounds with the F5-debug function, and noticed that indeed the state variable consistently decreased, while the dx(i)/dt would always remain positive.
Can anyone explain me how this is possible?
It is not advisable to pause the integration in the middle like that and examine the states and derivatives. ode15s does not simply step through the solution like a naive ODE solver. It makes a bunch of calls to the ODE function with semi-random states in order to compute higher-order derivatives. These states are not solutions to system but are used internally by ode15s to get a more accurate solution later.
If you want to get the derivative of your system at particular times, first compute the entire solution and then call your ODE function with slices of that solution at the times you are interested in.

How to solve equations with complex coefficients using ode45 in MATLAB?

I am trying to solve two equations with complex coefficients using ode45.
But iam getting an error message as "Inputs must be floats, namely single or
double."
X = sym(['[',sprintf('X(%d) ',1:2),']']);
Eqns=[-(X(1)*23788605396486326904946699391889*1i)/38685626227668133590597632 + (X(2)*23788605396486326904946699391889*1i)/38685626227668133590597632; (X(2)*23788605396486326904946699391889*1i)/38685626227668133590597632 + X(1)*(- 2500000 + (5223289665997855453060886952725538686654593059791*1i)/324518553658426726783156020576256)] ;
f=#(t,X)[Eqns];
[t,Xabc]=ode45(f,[0 300*10^-6],[0 1])
How can i fix this ? Can somebody can help me ?
Per the MathWorks Support Team, the "ODE solvers in MATLAB 5 (R12) and later releases properly handle complex valued systems." So the complex numbers are the not the issue.
The error "Inputs must be floats, namely single or double." stems from your definition of f using Symbolic Variables that are, unlike complex numbers, not floats. The easiest way to get around this is to not use the Symbolic Toolbox at all; just makes Eqns an anonymous function:
Eqns= #(t,X) [-(X(1)*23788605396486326904946699391889*1i)/38685626227668133590597632 + (X(2)*23788605396486326904946699391889*1i)/38685626227668133590597632; (X(2)*23788605396486326904946699391889*1i)/38685626227668133590597632 + X(1)*(- 2500000 + (5223289665997855453060886952725538686654593059791*1i)/324518553658426726783156020576256)] ;
[t,Xabc]=ode45(Eqns,[0 300*10^-6],[0 1]);
That being said, I'd like to point out that numerically time integrating this system over 300 microseconds (I assume without units given) will take a long time since your coefficient matrix has imaginary eigenvalues on the order of 10E+10. The extremely short wavelength of those oscillations will more than likely be resolved by Matlab's adaptive methods, and that will take a while to solve for a time span just a few orders greater than the wavelength.
I'd, therefore, suggest an analytical approach to this problem; unless it is a stepping stone another problem that is non-analytically solvable.
Systems of ordinary differential equations of the form
,
which is a linear, homogenous system with a constant coefficient matrix, has the general solution
,
where the m-subscripted exponential function is the matrix exponential.
Therefore, the analytical solution to the system can be calculated exactly assuming the matrix exponential can be calculated.
In Matlab, the matrix exponential is calculate via the expm function.
The following code computes the analytical solution and compares it to the numerical one for a short time span:
% Set-up
A = [-23788605396486326904946699391889i/38685626227668133590597632,23788605396486326904946699391889i/38685626227668133590597632;...
-2500000+5223289665997855453060886952725538686654593059791i/324518553658426726783156020576256,23788605396486326904946699391889i/38685626227668133590597632];
Eqns = #(t,X) A*X;
X0 = [0;1];
% Numerical
options = odeset('RelTol',1E-8,'AbsTol',1E-8);
[t,Xabc]=ode45(Eqns,[0 1E-9],X0,options);
% Analytical
Xana = cell2mat(arrayfun(#(tk) expm(A*tk)*X0,t,'UniformOutput',false)')';
k = 1;
% Plots
figure(1);
subplot(3,1,1)
plot(t,abs(Xana(:,k)),t,abs(Xabc(:,k)),'--');
title('Magnitude');
subplot(3,1,2)
plot(t,real(Xana(:,k)),t,real(Xabc(:,k)),'--');
title('Real');
ylabel('Values');
subplot(3,1,3)
plot(t,imag(Xana(:,k)),t,imag(Xabc(:,k)),'--');
title('Imaginary');
xlabel('Time');
The comparison plot is:
The output of ode45 matches the magnitude and real parts of the solution very well, but the imaginary portion is out-of-phase by exactly π.
However, since ode45's error estimator only looks at norms, the phase difference is not noticed which may lead to problems depending on the application.
It will be noted that while the matrix exponential solution is far more costly than ode45 for the same number of time vector elements, the analytical solution will produce the exact solution for any time vector of any density given to it. So for long time solutions, the matrix exponential can be viewed as an improvement in some sense.

matlab differential equation

I have the following differential equation which I'm not able to solve.
We know the following about the equation:
D(r) is a third grade polynom
D'(1)=D'(2)=0
D(2)=2D(1)
u(1)=450
u'(2)=-K * (u(2)-Te)
Where K and Te are constants.
I want to approximate the problem using a matrix and I managed to solve
the similiar equation: with the same limit conditions for u(1) and u'(2).
On this equation I approximated u' and u'' with central differences and used a finite difference method between r=1 to r=2. I then placed the results in a matrix A in matlab and the limit conditions in the vector Y in matlab and ran u=A\Y to get how the u value changes. Heres my matlab code for the equation I managed to solve:
clear
a=1;
b=2;
N=100;
h = (b-a)/N;
K=3.20;
Ti=450;
Te=20;
A = zeros(N+2);
A(1,1)=1;
A(end,end)=1/(2*h*K);
A(end,end-1)=1;
A(end,end-2)=-1/(2*h*K);
r=a+h:h:b;
%y(i)
for i=1:1:length(r)
yi(i)=-r(i)*(2/(h^2));
end
A(2:end-1,2:end-1)=A(2:end-1,2:end-1)+diag(yi);
%y(i-1)
for i=1:1:length(r)-1
ymin(i)=r(i+1)*(1/(h^2))-1/(2*h);
end
A(3:end-1,2:end-2) = A(3:end-1,2:end-2)+diag(ymin);
%y(i+1)
for i=1:1:length(r)
ymax(i)=r(i)*(1/(h^2))+1/(2*h);
end
A(2:end-1,3:end)=A(2:end-1,3:end)+diag(ymax);
Y=zeros(N+2,1);
Y(1) =Ti;
Y(2)=-(Ti*(r(1)/(h^2)-(1/(2*h))));
Y(end) = Te;
r=[1,r];
u=A\Y;
plot(r,u(1:end-1));
My question is, how do I solve the first differential equation?
As TroyHaskin pointed out in comments, one can determine D up to a constant factor, and that constant factor cancels out in D'/D anyway. Put another way: we can assume that D(1)=1 (a convenient number), since D can be multiplied by any constant. Now it's easy to find the coefficients (done with Wolfram Alpha), and the polynomial turns out to be
D(r) = -2r^3+9r^2-12r+6
with derivative D'(r) = -6r^2+18r-12. (There is also a smarter way to find the polynomial by starting with D', which is quadratic with known roots.)
I would probably use this information right away, computing the coefficient k of the first derivative:
r = a+h:h:b;
k = 1+r.*(-6*r.^2+18*r-12)./(-2*r.^3+9*r.^2-12*r+6);
It seems that k is always positive on the interval [1,2], so if you want to minimize the changes to existing code, just replace r(i) by r(i)/k(i) in it.
By the way, instead of loops like
for i=1:1:length(r)
yi(i)=-r(i)*(2/(h^2));
end
one usually does simply
yi=-r*(2/(h^2));
This vectorization makes the code more compact and can benefit the performance too (not so much in your example, where solving the linear system is the bottleneck). Another benefit is that yi is properly initialized, while with your loop construction, if yi happened to already exist and have length greater than length(r), the resulting array would have extraneous entries. (This is a potential source of hard-to-track bugs.)

how to use Euler method for numerical integration of differential equation?

I want to numerically solve a stochastic differential equation (SDE) in MATLAB, The code I have written just simply does not recognize sde function!
The question is as below:
dz=v*dt +sqrt(2*Ds)*dw_t
where v = 1/(N*delta) * sigma f_i (i=1- N)
N= 100,
delta = e6,
and f_i is calculated form this equation:
for z>=z0 , f_i = -kappa*(z0_i -z) and kappa = .17
for z<z0 , f_i = -kappaT*(z0_i -z) and kappaT = 60
note that the initial values for z0_i is randomly distributed over 60nm range.
Ds = 4e4
and dw_t is an increment in Wiener process.
Firstly I don't know how to set the conditions for z while I don't have the value for it!
Secondly, the Euler algorithm is exactly matching the equation but I don't know why the code with sde function is not working!
In order to numerically solve a SDE, you would need a Initial Condition (IC) for the function you want to code. In your case, I guess it's z. If you want to do so without explicitly declaring the IC, you can write it as a function that takes an IC. Then to test, you would input random ICs in.
Also, it is not clear to me whether your z0 is also stochastic and changes with time, is randomly generated every time step, or a constant that was only randomly generated once. Even simpler, if z0 is just the IC of z, then your f_i just inspects whether z has increased or decreased through the time step to decide how z would change the next time step. Please clarify this and your problem will seem much clearer.
It is not too hard to simulate your SDE without the use of the solver. You can try it out and achieve better result since sometimes you will really need to learn the behavior of the solver in order for it to work. I would suggest Monte Carlo method if you choose to write your own solver to ensure accuracy.
I hope my answer helps. If you still have any questions, feel free to ask.