how to use Euler method for numerical integration of differential equation? - matlab

I want to numerically solve a stochastic differential equation (SDE) in MATLAB, The code I have written just simply does not recognize sde function!
The question is as below:
dz=v*dt +sqrt(2*Ds)*dw_t
where v = 1/(N*delta) * sigma f_i (i=1- N)
N= 100,
delta = e6,
and f_i is calculated form this equation:
for z>=z0 , f_i = -kappa*(z0_i -z) and kappa = .17
for z<z0 , f_i = -kappaT*(z0_i -z) and kappaT = 60
note that the initial values for z0_i is randomly distributed over 60nm range.
Ds = 4e4
and dw_t is an increment in Wiener process.
Firstly I don't know how to set the conditions for z while I don't have the value for it!
Secondly, the Euler algorithm is exactly matching the equation but I don't know why the code with sde function is not working!

In order to numerically solve a SDE, you would need a Initial Condition (IC) for the function you want to code. In your case, I guess it's z. If you want to do so without explicitly declaring the IC, you can write it as a function that takes an IC. Then to test, you would input random ICs in.
Also, it is not clear to me whether your z0 is also stochastic and changes with time, is randomly generated every time step, or a constant that was only randomly generated once. Even simpler, if z0 is just the IC of z, then your f_i just inspects whether z has increased or decreased through the time step to decide how z would change the next time step. Please clarify this and your problem will seem much clearer.
It is not too hard to simulate your SDE without the use of the solver. You can try it out and achieve better result since sometimes you will really need to learn the behavior of the solver in order for it to work. I would suggest Monte Carlo method if you choose to write your own solver to ensure accuracy.
I hope my answer helps. If you still have any questions, feel free to ask.

Related

Normalization of integrand for numerical integration in Matlab

First off, I'm not sure if this is the best place to post this, but since there isn't a dedicated Matlab community I'm posting this here.
To give a little background, I'm currently prototyping a plasma physics simulation which involves triple integration. The innermost integral can be done analytically, but for the outer two this is just impossible. I always thought it's best to work with values close to unity and thus normalized the my innermost integral such that it is unit-less and usually takes values close to unity. However, compared to an earlier version of the code where the this innermost integral evaluated to values of the order of 1e-50, the numerical double integration, which uses the native Matlab function integral2 with target relative tolerance of 1e-6, now requires around 1000 times more function evaluations to converge. As a consequence my simulation now takes roughly 12h instead of the previous 20 minutes.
Question
So my questions are:
Is it possible that the faster convergence in the older version is simply due to the additional evaluations vanishing as roundoff errors and that the results thus arn't trustworthy even though it passes the 1e-6 relative tolerance? In the few tests I run the results seemed to be the same in both versions though.
What is the best practice concerning the normalization of the integrand for numerical integration?
Is there some way to improve the convergence of numerical integrals, especially if the integrand might have singularities?
I'm thankful for any help or insight, especially since I don't fully understand the inner workings of Matlab's integral2 function and what should be paid attention to when using it.
If I didn't know any better I would actually conclude, that the integrand which is of the order of 1e-50 works way better than one of say the order of 1e+0, but that doesn't seem to make sense. Is there some numerical reason why this could actually be the case?
TL;DR when multiplying the function to be integrated numerically by Matlab 's integral2 with a factor 1e-50 and then the result in turn with a factor 1e+50, the integral gives the same result but converges way faster and I don't understand why.
edit:
I prepared a short script to illustrate the problem. Here the relative difference between the two results was of the order of 1e-4 and thus below the actual relative tolerance of integral2. In my original problem however the difference was even smaller.
fun = #(x,y,l) l./(sqrt(1-x.*cos(y)).^5).*((1-x).*sin(y));
x = linspace(0,1,101);
y = linspace(0,pi,101).';
figure
surf(x,y,fun(x,y,1));
l = linspace(0,1,101); l=l(2:end);
v1 = zeros(1,100); v2 = v1;
tval = tic;
for i=1:100
fun1 = #(x,y) fun(x,y,l(i));
v1(i) = integral2(fun1,0,1,0,pi,'RelTol',1e-6);
end
t1 = toc(tval)
tval = tic;
for i=1:100
fun1 = #(x,y) 1e-50*fun(x,y,l(i));
v2(i) = 1e+50*integral2(fun1,0,1,0,pi,'RelTol',1e-6);
end
t2 = toc(tval)
figure
hold all;
plot(l,v1);
plot(l,v2);
plot(l,abs((v2-v1)./v1));

Matlab ode15s: postive dx/dt, decreasing x(t)

In my script, I call the ODE solver ode15s which solves a system of 9 ODE's. A simplified structure of the code:
[t, x] = ode15s(#odefun,tini:tend,options)
...
function dx = odefun(t,x)
r1=... %rate equation 1, dependent on x(1) and x(3) for example
r2=... %rate equation 2
...
dx(1) = r1+r2-...
dx(2) = ...
...
dx(9) = ...
end
When reviewing the results I was curious why the profile of one state variable was increasing at a certain range. In order to investigate this, I used conditional debugging within the ode function so I could check all the rates and all the dx(i)/dt equations.
To my big surprise, I found out that the differential equation of the decreasing state variable was positive. So, I simulated multiple rounds with the F5-debug function, and noticed that indeed the state variable consistently decreased, while the dx(i)/dt would always remain positive.
Can anyone explain me how this is possible?
It is not advisable to pause the integration in the middle like that and examine the states and derivatives. ode15s does not simply step through the solution like a naive ODE solver. It makes a bunch of calls to the ODE function with semi-random states in order to compute higher-order derivatives. These states are not solutions to system but are used internally by ode15s to get a more accurate solution later.
If you want to get the derivative of your system at particular times, first compute the entire solution and then call your ODE function with slices of that solution at the times you are interested in.

Obtaining the constant that makes the integral equal to zero in Matlab

I'm trying to code a MATLAB program and I have arrived at a point where I need to do the following. I have this equation:
I must find the value of the constant "Xcp" (greater than zero), that is the value that makes the integral equal to zero.
In order to do so, I have coded a loop in which the the value of Xcp advances with small increments on each iteration and the integral is performed and checked if it's zero, if it reaches zero the loop finishes and the Xcp is stored with this value.
However, I think this is not an efficient way to do this task. The running time increases a lot, because this loop is long and has the to perform the integral and the integration limits substitution every time.
Is there a smarter way to do this in Matlab to obtain a better code efficiency?
P.S.: I have used conv() to multiply both polynomials. Since cl(x) and (x-Xcp) are both polynomials.
EDIT: Piece of code.
p = [1 -Xcp]; % polynomial (x-Xcp)
Xcp=0.001;
i=1;
found=false;
while(i<=x_te && found~=true) % Xcp is upper bounded by x_te
int_cl_p = polyint(conv(cl,p));
Cm_cp=(-1/c^2)*diff(polyval(int_cl_p,[x_le,x_te]));
if(Cm_cp==0)
found=true;
else
Xcp=Xcp+0.001;
end
end
This is the code I used to run this section. Another problem is that I have to do it for different cases (different cl functions), for this reason the code is even more slow.
As far as I understood, you need to solve the equation for X_CP.
I suggest using symbolic solver for this. This is not the most efficient way for large polynomials, but for polynomials of degree 20 it takes less than 1 second. I do not claim that this solution is fastest, but this provides generic solution to the problem. If your polynomial does not change every iteration, then you can use this generic solution many times and not spend time for calculating integral.
So, generic symbolic solution in terms of xLE and xTE is obtained using this:
syms xLE xTE c x xCP
a = 1:20;
%//arbitrary polynomial of degree 20
cl = sum(x.^a.*randi([-100,100],1,20));
tic
eqn = -1/c^2 * int(cl * (x-xCP), x, xLE, xTE) == 0;
xCP = solve(eqn,xCP);
pretty(xCP)
toc
Elapsed time is 0.550371 seconds.
You can further use matlabFunction for finding the numerical solutions:
xCP_numerical = matlabFunction(xCP);
%// we then just plug xLE = 10 and xTE = 20 values into function
answer = xCP_numerical(10,20)
answer =
19.8038
The slight modification of the code can allow you to use this for generic coefficients.
Hope that helps
If you multiply by -1/c^2, then you can rearrange as
and integrate however you fancy. Since c_l is a polynomial order N, if it's defined in MATLAB using the usual notation for polyval, where coefficients are stored in a vector a such that
then integration is straightforward:
MATLAB code might look something like this
int_cl_p = polyint(cl);
int_cl_x_p = polyint([cl 0]);
X_CP = diff(polyval(int_cl_x_p,[x_le,x_te]))/diff(polyval(int_cl_p,[x_le,x_te]));

Matlab recursive curve fitting with custom equations

I have a curve IxV. I also have an equation that I want to fit in this IxV curve, so I can adjust its constants. It is given by:
I = I01(exp((V-R*I)/(n1*vth))-1)+I02(exp((V-R*I)/(n2*vth))-1)
vth and R are constants already known, so I only want to achieve I01, I02, n1, n2. The problem is: as you can see, I is dependent on itself. I was trying to use the curve fitting toolbox, but it doesn't seem to work on recursive equations.
Is there a way to make the curve fitting toolbox work on this? And if there isn't, what can I do?
Assuming that I01 and I02 are variables and not functions, then you should set the problem up like this:
a0 = [I01 I02 n1 n2];
MinFun = #(a) abs(a(1)*(exp(V-R*I)/(a(3)*vth))-1) + a(2)*(exp((V-R*I)/a(4)*vth))-1) - I);
aout = fminsearch(a0,MinFun);
By subtracting I and taking the absolute value, the point where both sides are equal will be the point where MinFun is zero (minimized).
No, the CFTB cannot fit such recursively defined functions. And errors in I, since the true value of I is unknown for any point, will create a kind of errors in variables problem. All you have are the "measured" values for I.
The problem of errors in I MAY be serious, since any errors in I, or lack of fit, noise, model problems, etc., will be used in the expression itself. Then you exponentiate these inaccurate values, potentially casing a mess.
You may be able to use an iterative approach. Thus something like
% 0. Initialize I_pred
I_pred = I;
% 1. Estimate the values of your coefficients, for this model:
% (The curve fitting toolbox CAN solve this problem, given I_pred)
I = I01(exp((V-R*I_pred)/(n1*vth))-1)+I02(exp((V-R*I_pred)/(n2*vth))-1)
% 2. Generate new predictions for I_pred
I_pred = I01(exp((V-R*I_pred)/(n1*vth))-1)+I02(exp((V-R*I_pred)/(n2*vth))-1)
% Repeat steps 1 and 2 until the parameters from the CFTB stabilize.
The above pseudo-code will work only if your starting values are good, and there are not large errors/noise in the model/data. Even on a good day, the above approach may not converge well. But I see little hope otherwise.

MATLAB code help. Backward Euler method

Here is the MATLAB/FreeMat code I got to solve an ODE numerically using the backward Euler method. However, the results are inconsistent with my textbook results, and sometimes even ridiculously inconsistent. What is wrong with the code?
function [x,y] = backEuler(f,xinit,yinit,xfinal,h)
%f - this is your y prime
%xinit - initial X
%yinit - initial Y
%xfinal - final X
%h - step size
n = (xfinal-xinit)/h; %Calculate steps
%Inititialize arrays...
%The first elements take xinit and yinit corespondigly, the rest fill with 0s.
x = [xinit zeros(1,n)];
y = [yinit zeros(1,n)];
%Numeric routine
for i = 1:n
x(i+1) = x(i)+h;
ynew = y(i)+h*(f(x(i),y(i)));
y(i+1) = y(i)+h*f(x(i+1),ynew);
end
end
Your method is a method of a new kind. It is neither backward nor forward Euler. :-)
Forward Euler: y1 = y0 + h*f(x0,y0)
Backward Euler solve in y1: y1 - h*f(x1,y1) = y0
Your method: y1 = y0 +h*f(x0,x0+h*f(x0,y0))
Your method is not backward Euler.
You don't solve in y1, you just estimate y1 with the forward Euler method. I don't want to pursue the analysis of your method, but I believe it will behave poorly indeed, even compared with forward Euler, since you evaluate the function f at the wrong point.
Here is the closest method to your method that I can think of, explicit as well, which should give much better results. It's Heun's Method:
y1 = y0 + h/2*(f(x0,y0) + f(x1,x0+h*f(x0,y0)))
The only issue I can spot is that the line:
n=(xfinal-xinit)/h
Should be:
n = abs((xfinal-xinit)/h)
To avoid a negative step count. If you are moving in the negative-x direction, make sure to give the function a negative step size.
Your answers probably deviate because of how coarsely you are approximating your answer. To get a semi-accurate result, deltaX has to be very very small and your step size has to be very very very small.
PS. This isn't the "backward Euler method," it is just regular old Euler's method.
If this is homework please tag it so.
Have a look at numerical recipes, specifically chapter 16, integration of ordinary differential equations. Euler's method is known to have problems:
There are several reasons that Euler’s method is not recommended for practical use, among them, (i) the method is not very accurate when compared to other, fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
So unless you know your textbook is using Euler's method, I wouldn't expect the results to match. Even if it is, you probably have to use an identical step size to get an identical result.
Unless you really want to solve an ODE via Euler's method that you've written by yourself you should have a look at built-in ODE solvers.
On a sidenote: you don't need to create x(i) inside the loop like this: x(i+1) = x(i)+h;. Instead, you can simply write x = xinit:h:xfinal;. Also, you may want to write n = round(xfinal-xinit)/h); to avoid warnings.
Here are the solvers implemented by MATLAB.
ode45 is based on an explicit
Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step
solver – in computing y(tn), it needs
only the solution at the immediately
preceding time point, y(tn-1). In
general, ode45 is the best function to
apply as a first try for most
problems.
ode23 is an implementation of an
explicit Runge-Kutta (2,3) pair of
Bogacki and Shampine. It may be more
efficient than ode45 at crude
tolerances and in the presence of
moderate stiffness. Like ode45, ode23
is a one-step solver.
ode113 is a variable order
Adams-Bashforth-Moulton PECE solver.
It may be more efficient than ode45 at
stringent tolerances and when the ODE
file function is particularly
expensive to evaluate. ode113 is a
multistep solver — it normally needs
the solutions at several preceding
time points to compute the current
solution.
The above algorithms are intended to
solve nonstiff systems. If they appear
to be unduly slow, try using one of
the stiff solvers below.
ode15s is a variable order solver
based on the numerical differentiation
formulas (NDFs). Optionally, it uses
the backward differentiation formulas
(BDFs, also known as Gear's method)
that are usually less efficient. Like
ode113, ode15s is a multistep solver.
Try ode15s when ode45 fails, or is
very inefficient, and you suspect that
the problem is stiff, or when solving
a differential-algebraic problem.
ode23s is based on a modified
Rosenbrock formula of order 2. Because
it is a one-step solver, it may be
more efficient than ode15s at crude
tolerances. It can solve some kinds of
stiff problems for which ode15s is not
effective.
ode23t is an implementation of the
trapezoidal rule using a "free"
interpolant. Use this solver if the
problem is only moderately stiff and
you need a solution without numerical
damping. ode23t can solve DAEs.
ode23tb is an implementation of
TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a
trapezoidal rule step and a second
stage that is a backward
differentiation formula of order two.
By construction, the same iteration
matrix is used in evaluating both
stages. Like ode23s, this solver may
be more efficient than ode15s at crude
tolerances.
I think this code could work. Try this.
for i =1:n
t(i +1)=t(i )+dt;
y(i+1)=solve('y(i+1)=y(i)+dt*f(t(i+1),y(i+1)');
end
The code is fine. Just you have to add another loop within the for loop. To check the level of consistency.
if abs((y(i+1) - ynew)/ynew) > 0.0000000001
ynew = y(i+1);
y(i+1) = y(i)+h*f(x(i+1),ynew);
end
I checked for a dummy function and the results were promising.