STM32F407 TIM8 complementary - stm32

I can't figure out why my code doesn't work! I've worked with TIM1 and everything works fine but when I change to TIM8, PC6 and PC7 are always on and the complementaries always off. Please help me out and happy holidays!
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx.h"
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_tim.h"
#include "misc.h"
/* Private typedef -----------------------------------------------------------*/
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
/* Private define ------------------------------------------------------------*/
#define frequency 42500 /* output frequency 42500 KHz */
#define f1 1/2 /* phase shift 90 degrees */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
int TimerPeriod = 0;
/* Private function prototypes -----------------------------------------------*/
void TIM_Config(void);
/* Private functions ---------------------------------------------------------*/
/**
* Main program
*/
int main(void)
{
/* TIM8 Configuration */
TIM_Config();
/* Compute the value to be set in ARR register to generate the desired signal frequency */
TimerPeriod = ((SystemCoreClock/2) / frequency) - 1;
/* Time Base configuration */
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = TimerPeriod;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM8, &TIM_TimeBaseStructure);
/* Channel 1 and 2 Configuration in Toggle mode */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;
TIM_OCInitStructure.TIM_Pulse = (TimerPeriod/6)+ (TimerPeriod * f1);
TIM_OC1Init(TIM8, &TIM_OCInitStructure);
TIM_OCInitStructure.TIM_Pulse = (TimerPeriod/6) ;
TIM_OC2Init(TIM8, &TIM_OCInitStructure);
/* Automatic Output enable, Break, dead time and lock configuration*/
TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1;
TIM_BDTRInitStructure.TIM_DeadTime = 25; ///////// the right value for 250ns delay ////////
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable;
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;
TIM_BDTRConfig(TIM8, &TIM_BDTRInitStructure);
/* TIM8 counter enable */
TIM_Cmd(TIM8, ENABLE);
/* Main Output Enable */
TIM_CtrlPWMOutputs(TIM8, ENABLE);
while (1)
{
}
}
/**
* Configure the TIM8 Pins.
*/
void TIM_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* GPIOA, GPIOB and GPIOC clocks enable */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB | RCC_AHB1Periph_GPIOC, ENABLE);
/* TIM8 clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM8, ENABLE);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
/*GPIOA Configuration: Channel 1N and BKIN as alternate function push-pull*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* GPIOA Configuration: Channel 1 and 2 as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/* GPIOB Configuration: Channel 2N as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* Connect TIM pins to AF1 */
GPIO_PinAFConfig(GPIOA, GPIO_PinSource6, GPIO_AF_TIM8);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_TIM8);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource6, GPIO_AF_TIM8);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource7, GPIO_AF_TIM8);
GPIO_PinAFConfig(GPIOB, GPIO_PinSource0, GPIO_AF_TIM8);
}

#Swanand try to change this
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Set;
and let me know.

Related

Reading ADC with STM32H750 Discovery Kit

i want to read out a single ADC (temperature sensor) via polling method and want to display the result on the Display. On the backside of the board are some standard arduino connectors, i used them to connect the temperature sensor (CN7 -> A0 -> PC0 ).
The problem is, that it is not working despite i used only standard code in the default task for reading it:
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "libjpeg.h"
#include "app_touchgfx.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stm32h750b_discovery_qspi.h"
#include "stm32h750b_discovery_sdram.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
CRC_HandleTypeDef hcrc;
DMA2D_HandleTypeDef hdma2d;
JPEG_HandleTypeDef hjpeg;
MDMA_HandleTypeDef hmdma_jpeg_infifo_th;
MDMA_HandleTypeDef hmdma_jpeg_outfifo_th;
LTDC_HandleTypeDef hltdc;
QSPI_HandleTypeDef hqspi;
SDRAM_HandleTypeDef hsdram2;
/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
.name = "defaultTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for GUITask */
osThreadId_t GUITaskHandle;
const osThreadAttr_t GUITask_attributes = {
.name = "GUITask",
.stack_size = 8192 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for videoTask */
osThreadId_t videoTaskHandle;
const osThreadAttr_t videoTask_attributes = {
.name = "videoTask",
.stack_size = 1000 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MPU_Config(void);
static void MX_GPIO_Init(void);
static void MX_CRC_Init(void);
static void MX_LTDC_Init(void);
static void MX_DMA2D_Init(void);
static void MX_QUADSPI_Init(void);
static void MX_FMC_Init(void);
static void MX_JPEG_Init(void);
static void MX_MDMA_Init(void);
static void MX_ADC1_Init(void);
void StartDefaultTask(void *argument);
extern void TouchGFX_Task(void *argument);
extern void videoTaskFunc(void *argument);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
double Temp1 = 0;
double resistance1;
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MPU Configuration--------------------------------------------------------*/
MPU_Config();
/* Enable I-Cache---------------------------------------------------------*/
SCB_EnableICache();
/* Enable D-Cache---------------------------------------------------------*/
SCB_EnableDCache();
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* Explicit enabling interrupt to support debugging in CubeIDE when using external flash loader */
__enable_irq();
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_CRC_Init();
MX_LTDC_Init();
MX_DMA2D_Init();
MX_FMC_Init();
MX_LIBJPEG_Init();
MX_JPEG_Init();
MX_MDMA_Init();
MX_ADC1_Init();
MX_TouchGFX_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Init scheduler */
osKernelInitialize();
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* creation of defaultTask */
defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);
/* creation of GUITask */
GUITaskHandle = osThreadNew(TouchGFX_Task, NULL, &GUITask_attributes);
/* creation of videoTask */
videoTaskHandle = osThreadNew(videoTaskFunc, NULL, &videoTask_attributes);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* USER CODE BEGIN RTOS_EVENTS */
/* add events, ... */
/* USER CODE END RTOS_EVENTS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Supply configuration update enable
*/
HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
/** Macro to configure the PLL clock source
*/
__HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_HSE);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 5;
RCC_OscInitStruct.PLL.PLLN = 160;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 4;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief ADC1 Initialization Function
* #param None
* #retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_10;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
sConfig.OffsetSignedSaturation = DISABLE;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* #brief CRC Initialization Function
* #param None
* #retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* #brief DMA2D Initialization Function
* #param None
* #retval None
*/
static void MX_DMA2D_Init(void)
{
/* USER CODE BEGIN DMA2D_Init 0 */
/* USER CODE END DMA2D_Init 0 */
/* USER CODE BEGIN DMA2D_Init 1 */
/* USER CODE END DMA2D_Init 1 */
hdma2d.Instance = DMA2D;
hdma2d.Init.Mode = DMA2D_M2M;
hdma2d.Init.ColorMode = DMA2D_OUTPUT_RGB565;
hdma2d.Init.OutputOffset = 0;
hdma2d.LayerCfg[1].InputOffset = 0;
hdma2d.LayerCfg[1].InputColorMode = DMA2D_INPUT_RGB565;
hdma2d.LayerCfg[1].AlphaMode = DMA2D_NO_MODIF_ALPHA;
hdma2d.LayerCfg[1].InputAlpha = 0;
hdma2d.LayerCfg[1].AlphaInverted = DMA2D_REGULAR_ALPHA;
hdma2d.LayerCfg[1].RedBlueSwap = DMA2D_RB_REGULAR;
hdma2d.LayerCfg[1].ChromaSubSampling = DMA2D_NO_CSS;
if (HAL_DMA2D_Init(&hdma2d) != HAL_OK)
{
Error_Handler();
}
if (HAL_DMA2D_ConfigLayer(&hdma2d, 1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DMA2D_Init 2 */
/* USER CODE END DMA2D_Init 2 */
}
/**
* #brief JPEG Initialization Function
* #param None
* #retval None
*/
static void MX_JPEG_Init(void)
{
/* USER CODE BEGIN JPEG_Init 0 */
/* USER CODE END JPEG_Init 0 */
/* USER CODE BEGIN JPEG_Init 1 */
/* USER CODE END JPEG_Init 1 */
hjpeg.Instance = JPEG;
if (HAL_JPEG_Init(&hjpeg) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN JPEG_Init 2 */
/* USER CODE END JPEG_Init 2 */
}
/**
* #brief LTDC Initialization Function
* #param None
* #retval None
*/
static void MX_LTDC_Init(void)
{
/* USER CODE BEGIN LTDC_Init 0 */
/* USER CODE END LTDC_Init 0 */
LTDC_LayerCfgTypeDef pLayerCfg = {0};
/* USER CODE BEGIN LTDC_Init 1 */
/* USER CODE END LTDC_Init 1 */
hltdc.Instance = LTDC;
hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL;
hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;
hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL;
hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
hltdc.Init.HorizontalSync = 39;
hltdc.Init.VerticalSync = 8;
hltdc.Init.AccumulatedHBP = 42;
hltdc.Init.AccumulatedVBP = 11;
hltdc.Init.AccumulatedActiveW = 522;
hltdc.Init.AccumulatedActiveH = 283;
hltdc.Init.TotalWidth = 528;
hltdc.Init.TotalHeigh = 285;
hltdc.Init.Backcolor.Blue = 0;
hltdc.Init.Backcolor.Green = 0;
hltdc.Init.Backcolor.Red = 0;
if (HAL_LTDC_Init(&hltdc) != HAL_OK)
{
Error_Handler();
}
pLayerCfg.WindowX0 = 0;
pLayerCfg.WindowX1 = 480;
pLayerCfg.WindowY0 = 0;
pLayerCfg.WindowY1 = 272;
pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565;
pLayerCfg.Alpha = 255;
pLayerCfg.Alpha0 = 0;
pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA;
pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA;
pLayerCfg.FBStartAdress = 0;
pLayerCfg.ImageWidth = 480;
pLayerCfg.ImageHeight = 272;
pLayerCfg.Backcolor.Blue = 0;
pLayerCfg.Backcolor.Green = 0;
pLayerCfg.Backcolor.Red = 0;
if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN LTDC_Init 2 */
/* USER CODE END LTDC_Init 2 */
}
/**
* #brief QUADSPI Initialization Function
* #param None
* #retval None
*/
static void MX_QUADSPI_Init(void)
{
/* USER CODE BEGIN QUADSPI_Init 0 */
BSP_QSPI_Init_t qspi_initParams ;
/* USER CODE END QUADSPI_Init 0 */
/* USER CODE BEGIN QUADSPI_Init 1 */
/* USER CODE END QUADSPI_Init 1 */
/* QUADSPI parameter configuration*/
hqspi.Instance = QUADSPI;
hqspi.Init.ClockPrescaler = 3;
hqspi.Init.FifoThreshold = 1;
hqspi.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_NONE;
hqspi.Init.FlashSize = 26;
hqspi.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_4_CYCLE;
hqspi.Init.ClockMode = QSPI_CLOCK_MODE_0;
hqspi.Init.DualFlash = QSPI_DUALFLASH_ENABLE;
if (HAL_QSPI_Init(&hqspi) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN QUADSPI_Init 2 */
qspi_initParams.InterfaceMode = MT25TL01G_QPI_MODE;
qspi_initParams.TransferRate = MT25TL01G_DTR_TRANSFER ;
qspi_initParams.DualFlashMode = MT25TL01G_DUALFLASH_ENABLE;
BSP_QSPI_DeInit(0);
if (BSP_QSPI_Init(0, &qspi_initParams) != BSP_ERROR_NONE)
{
Error_Handler( );
}
if(BSP_QSPI_EnableMemoryMappedMode(0) != BSP_ERROR_NONE)
{
Error_Handler( );
}
/* USER CODE END QUADSPI_Init 2 */
}
/**
* Enable MDMA controller clock
*/
static void MX_MDMA_Init(void)
{
/* MDMA controller clock enable */
__HAL_RCC_MDMA_CLK_ENABLE();
/* Local variables */
/* MDMA interrupt initialization */
/* MDMA_IRQn interrupt configuration */
HAL_NVIC_SetPriority(MDMA_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(MDMA_IRQn);
}
/* FMC initialization function */
static void MX_FMC_Init(void)
{
/* USER CODE BEGIN FMC_Init 0 */
/* USER CODE END FMC_Init 0 */
FMC_SDRAM_TimingTypeDef SdramTiming = {0};
/* USER CODE BEGIN FMC_Init 1 */
/* USER CODE END FMC_Init 1 */
/** Perform the SDRAM2 memory initialization sequence
*/
hsdram2.Instance = FMC_SDRAM_DEVICE;
/* hsdram2.Init */
hsdram2.Init.SDBank = FMC_SDRAM_BANK2;
hsdram2.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;
hsdram2.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
hsdram2.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
hsdram2.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
hsdram2.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;
hsdram2.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
hsdram2.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
hsdram2.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
hsdram2.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
/* SdramTiming */
SdramTiming.LoadToActiveDelay = 2;
SdramTiming.ExitSelfRefreshDelay = 7;
SdramTiming.SelfRefreshTime = 4;
SdramTiming.RowCycleDelay = 7;
SdramTiming.WriteRecoveryTime = 5;
SdramTiming.RPDelay = 2;
SdramTiming.RCDDelay = 2;
if (HAL_SDRAM_Init(&hsdram2, &SdramTiming) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FMC_Init 2 */
BSP_SDRAM_DeInit(0);
if(BSP_SDRAM_Init(0) != BSP_ERROR_NONE)
{
Error_Handler( );
}
/* USER CODE END FMC_Init 2 */
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOK_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOI_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOJ_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, FRAME_RATE_Pin|RENDER_TIME_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LCD_DE_GPIO_Port, LCD_DE_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOI, GPIO_PIN_13, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(VSYNC_FREQ_GPIO_Port, VSYNC_FREQ_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LCD_BL_CTRL_GPIO_Port, LCD_BL_CTRL_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, LCD_RESET_Pin|MCU_ACTIVE_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : FRAME_RATE_Pin RENDER_TIME_Pin */
GPIO_InitStruct.Pin = FRAME_RATE_Pin|RENDER_TIME_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_DE_Pin */
GPIO_InitStruct.Pin = LCD_DE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LCD_DE_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PI13 */
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
/*Configure GPIO pin : VSYNC_FREQ_Pin */
GPIO_InitStruct.Pin = VSYNC_FREQ_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(VSYNC_FREQ_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_BL_CTRL_Pin */
GPIO_InitStruct.Pin = LCD_BL_CTRL_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LCD_BL_CTRL_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PC0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_RESET_Pin */
GPIO_InitStruct.Pin = LCD_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LCD_RESET_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : MCU_ACTIVE_Pin */
GPIO_InitStruct.Pin = MCU_ACTIVE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(MCU_ACTIVE_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* #brief Function implementing the defaultTask thread.
* #param argument: Not used
* #retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
uint16_t adcvalue;
/* Infinite loop */
for(;;)
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 100);
adcvalue = HAL_ADC_GetValue(&hadc1);
HAL_ADC_Stop(&hadc1);
int resolution = 4096;
resistance1 = 10000*((adcvalue/(double)resolution)/(1-(adcvalue/(double)resolution)));
Temp1 = 1/((1/298.15)+((double)1/3435)*log((double)resistance1/10000));
Temp1 = Temp1 - 273.15;
osDelay(20);
}
/* USER CODE END 5 */
}
/* MPU Configuration */
void MPU_Config(void)
{
MPU_Region_InitTypeDef MPU_InitStruct = {0};
/* Disables the MPU */
HAL_MPU_Disable();
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.BaseAddress = 0x24000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_512KB;
MPU_InitStruct.SubRegionDisable = 0x0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.BaseAddress = 0x90000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_256MB;
MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Number = MPU_REGION_NUMBER2;
MPU_InitStruct.Size = MPU_REGION_SIZE_128MB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Number = MPU_REGION_NUMBER3;
MPU_InitStruct.BaseAddress = 0xD0000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_256MB;
MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Number = MPU_REGION_NUMBER4;
MPU_InitStruct.Size = MPU_REGION_SIZE_32MB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Enables the MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
/**
* #brief Period elapsed callback in non blocking mode
* #note This function is called when TIM6 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* #param htim : TIM handle
* #retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM6) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* #brief This function is executed in case of error occurrence.
* #retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* #brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* #param file: pointer to the source file name
* #param line: assert_param error line source number
* #retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
To display data is no problem. I used a new virtual funktion and adjusted the Screen1View.

SMT32H7 (H745/H755): ADC "internal Error" with HAL

I'm using an STM32H755 (on NUCLEO-Board) with CubeIDE and trying to set up an ADC with HAL.
Without any changes to the default ADC and clock setup, the ADC goes into "error internal" state when trying to read values. Any Ideas why?
I didn't touch any ADC or clock settings, just set the runtime context in the .ioc file.
When initialized, the ADC state goes to "Ready" (after calling MX_ADC1_Init()) but after starting it with HAL_ADC_Start(&hadc1), HAL_ADC_GetError(&hadc1) and HAL_ADC_GetState(&hadc1) read the error message "error internal" and no values can be read.
Side note: with the same setup, DAC and DMA are working fine.
Here is my code (irrelevant code cut out) :
/* Private variables ---------------------------------------------------------*/
#if defined ( __ICCARM__ ) /*!< IAR Compiler */
#pragma location=0x30000000
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
#pragma location=0x30000200
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
#pragma location=0x30000260
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE]; /* Ethernet Receive Buffers */
#elif defined ( __CC_ARM ) /* MDK ARM Compiler */
__attribute__((at(0x30000000))) ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
__attribute__((at(0x30000200))) ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
__attribute__((at(0x30000260))) uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE]; /* Ethernet Receive Buffer */
#elif defined ( __GNUC__ ) /* GNU Compiler */
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT] __attribute__((section(".RxDecripSection"))); /* Ethernet Rx DMA Descriptors */
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT] __attribute__((section(".TxDecripSection"))); /* Ethernet Tx DMA Descriptors */
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE] __attribute__((section(".RxArraySection"))); /* Ethernet Receive Buffers */
#endif
ETH_TxPacketConfig TxConfig;
ADC_HandleTypeDef hadc1;
ETH_HandleTypeDef heth;
UART_HandleTypeDef huart3;
PCD_HandleTypeDef hpcd_USB_OTG_FS;
/* USER CODE BEGIN PV */
uint64_t state = 0;
uint64_t error = 0;
uint16_t value = 0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ETH_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_USB_OTG_FS_PCD_Init(void);
static void MX_ADC1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* USER CODE BEGIN Boot_Mode_Sequence_0 */
int32_t timeout;
/* USER CODE END Boot_Mode_Sequence_0 */
/* USER CODE BEGIN Boot_Mode_Sequence_1 */
/* Wait until CPU2 boots and enters in stop mode or timeout*/
timeout = 0xFFFF;
while((__HAL_RCC_GET_FLAG(RCC_FLAG_D2CKRDY) != RESET) && (timeout-- > 0));
if ( timeout < 0 )
{
Error_Handler();
}
/* USER CODE END Boot_Mode_Sequence_1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN Boot_Mode_Sequence_2 */
/* When system initialization is finished, Cortex-M7 will release Cortex-M4 by means of
HSEM notification */
/*HW semaphore Clock enable*/
__HAL_RCC_HSEM_CLK_ENABLE();
/*Take HSEM */
HAL_HSEM_FastTake(HSEM_ID_0);
/*Release HSEM in order to notify the CPU2(CM4)*/
HAL_HSEM_Release(HSEM_ID_0,0);
/* wait until CPU2 wakes up from stop mode */
timeout = 0xFFFF;
while((__HAL_RCC_GET_FLAG(RCC_FLAG_D2CKRDY) == RESET) && (timeout-- > 0));
if ( timeout < 0 )
{
Error_Handler();
}
/* USER CODE END Boot_Mode_Sequence_2 */
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ETH_Init();
MX_USART3_UART_Init();
MX_USB_OTG_FS_PCD_Init();
MX_ADC1_Init();
/* USER CODE BEGIN 2 */
HAL_Delay(1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
error = HAL_ADC_GetError(&hadc1);
state = HAL_ADC_GetState(&hadc1);
HAL_ADC_Start(&hadc1);
error = HAL_ADC_GetError(&hadc1);
state = HAL_ADC_GetState(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 1000);
error = HAL_ADC_GetError(&hadc1);
state = HAL_ADC_GetState(&hadc1);
value = HAL_ADC_GetValue(&hadc1);
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Supply configuration update enable
*/
HAL_PWREx_ConfigSupply(PWR_DIRECT_SMPS_SUPPLY);
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 24;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 4;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief ADC1 Initialization Function
* #param None
* #retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.Resolution = ADC_RESOLUTION_16B;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_3;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
sConfig.OffsetSignedSaturation = DISABLE;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
Found the error by myself...
In the MX_ADC1_Init() function, there was the line hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV1 missing to set the adc clock. There was no option to select this setting in the .ioc file ;-/
Turns out that with the default value for hadc1.Init.ClockPrescaler in the HAL, the adc won't work

ST32F407 got HAL_ETH_ERROR_DMA when I plugin the ethernet cable

I have an STM32F407 with the ethernet PHY DP83848.
I cannot ping the device if I'm using the LwIP because I'm facing some errors.
I do the following steps to reproduce the error.
I start up my PCB board
I let the initialization do its job and I get no error back.
I plugin my ethernet cable
I ping a random device with a random number
Then my activity LED blink on the DP83848 and then I get an interrupt.
I get the error code 0x8. That means I'm facing DMA issues. But why?
/** #defgroup ETH_Error_Code ETH Error Code
* #{
*/
#define HAL_ETH_ERROR_NONE ((uint32_t)0x00000000U) /*!< No error */
#define HAL_ETH_ERROR_PARAM ((uint32_t)0x00000001U) /*!< Busy error */
#define HAL_ETH_ERROR_BUSY ((uint32_t)0x00000002U) /*!< Parameter error */
#define HAL_ETH_ERROR_TIMEOUT ((uint32_t)0x00000004U) /*!< Timeout error */
#define HAL_ETH_ERROR_DMA ((uint32_t)0x00000008U) /*!< DMA transfer error */
#define HAL_ETH_ERROR_MAC ((uint32_t)0x00000010U) /*!< MAC transfer error */
#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1)
#define HAL_ETH_ERROR_INVALID_CALLBACK ((uint32_t)0x00000020U) /*!< Invalid Callback error */
#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */
/**
* #}
*/
My STM32F407 does not have DMA for Ethernet. What should I do now? Is this a bug?
My complete code:
ETH_TxPacketConfig TxConfig;
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
ADC_HandleTypeDef hadc1;
CAN_HandleTypeDef hcan1;
DCMI_HandleTypeDef hdcmi;
DMA_HandleTypeDef hdma_dcmi;
ETH_HandleTypeDef heth;
RTC_HandleTypeDef hrtc;
SPI_HandleTypeDef hspi2;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;
UART_HandleTypeDef huart5;
SRAM_HandleTypeDef hsram1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_FSMC_Init(void);
static void MX_DCMI_Init(void);
static void MX_SPI2_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM3_Init(void);
static void MX_ADC1_Init(void);
static void MX_CAN1_Init(void);
static void MX_RTC_Init(void);
static void MX_TIM4_Init(void);
static void MX_DMA_Init(void);
static void MX_UART5_Init(void);
static void MX_ETH_Init(void);
/* USER CODE BEGIN PFP */
void demoLCD(int i);
unsigned long testFillScreen();
unsigned long testText();
unsigned long testLines(uint16_t color);
unsigned long testFastLines(uint16_t color1, uint16_t color2);
unsigned long testRects(uint16_t color);
unsigned long testFilledRects(uint16_t color1, uint16_t color2);
unsigned long testFilledCircles(uint8_t radius, uint16_t color);
unsigned long testCircles(uint8_t radius, uint16_t color);
unsigned long testTriangles();
unsigned long testFilledTriangles();
unsigned long testRoundRects();
unsigned long testFilledRoundRects();
unsigned long testDrawImage();
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void HAL_ETH_RxAllocateCallback(uint8_t **buff){
}
void HAL_ETH_RxLinkCallback(void **pStart, void **pEnd, uint8_t *buff, uint16_t Length){
}
void HAL_ETH_TxFreeCallback(uint32_t *buff){
}
void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth){
}
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth){
}
void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth){
uint32_t errorCode = heth->ErrorCode;
}
void HAL_ETH_PMTCallback(ETH_HandleTypeDef *heth){
}
void HAL_ETH_WakeUpCallback(ETH_HandleTypeDef *heth){
}
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_FSMC_Init();
MX_DCMI_Init();
MX_SPI2_Init();
MX_TIM1_Init();
MX_TIM3_Init();
MX_ADC1_Init();
MX_CAN1_Init();
MX_RTC_Init();
MX_TIM4_Init();
MX_DMA_Init();
MX_UART5_Init();
MX_ETH_Init();
/* USER CODE BEGIN 2 */
/* Start up LCD */
HAL_GPIO_WritePin(LCD_RESET_GPIO_Port, LCD_RESET_Pin, GPIO_PIN_SET);
LCD_BL_ON();
lcdInit();
HAL_GPIO_WritePin(ETH_RESET_GPIO_Port, ETH_RESET_Pin, GPIO_PIN_RESET);
HAL_Delay(1);
HAL_GPIO_WritePin(ETH_RESET_GPIO_Port, ETH_RESET_Pin, GPIO_PIN_SET);
/* Enable interrupt */
HAL_ETH_Start_IT(&heth);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 50;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV8;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief ADC1 Initialization Function
* #param None
* #retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* #brief CAN1 Initialization Function
* #param None
* #retval None
*/
static void MX_CAN1_Init(void)
{
/* USER CODE BEGIN CAN1_Init 0 */
/* USER CODE END CAN1_Init 0 */
/* USER CODE BEGIN CAN1_Init 1 */
/* USER CODE END CAN1_Init 1 */
hcan1.Instance = CAN1;
hcan1.Init.Prescaler = 16;
hcan1.Init.Mode = CAN_MODE_NORMAL;
hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan1.Init.TimeSeg1 = CAN_BS1_1TQ;
hcan1.Init.TimeSeg2 = CAN_BS2_1TQ;
hcan1.Init.TimeTriggeredMode = DISABLE;
hcan1.Init.AutoBusOff = DISABLE;
hcan1.Init.AutoWakeUp = DISABLE;
hcan1.Init.AutoRetransmission = DISABLE;
hcan1.Init.ReceiveFifoLocked = DISABLE;
hcan1.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CAN1_Init 2 */
/* USER CODE END CAN1_Init 2 */
}
/**
* #brief DCMI Initialization Function
* #param None
* #retval None
*/
static void MX_DCMI_Init(void)
{
/* USER CODE BEGIN DCMI_Init 0 */
/* USER CODE END DCMI_Init 0 */
/* USER CODE BEGIN DCMI_Init 1 */
/* USER CODE END DCMI_Init 1 */
hdcmi.Instance = DCMI;
hdcmi.Init.SynchroMode = DCMI_SYNCHRO_HARDWARE;
hdcmi.Init.PCKPolarity = DCMI_PCKPOLARITY_RISING;
hdcmi.Init.VSPolarity = DCMI_VSPOLARITY_HIGH;
hdcmi.Init.HSPolarity = DCMI_HSPOLARITY_LOW;
hdcmi.Init.CaptureRate = DCMI_CR_ALL_FRAME;
hdcmi.Init.ExtendedDataMode = DCMI_EXTEND_DATA_8B;
hdcmi.Init.JPEGMode = DCMI_JPEG_DISABLE;
if (HAL_DCMI_Init(&hdcmi) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DCMI_Init 2 */
/* USER CODE END DCMI_Init 2 */
}
/**
* #brief ETH Initialization Function
* #param None
* #retval None
*/
static void MX_ETH_Init(void)
{
/* USER CODE BEGIN ETH_Init 0 */
/* USER CODE END ETH_Init 0 */
static uint8_t MACAddr[6];
/* USER CODE BEGIN ETH_Init 1 */
/* USER CODE END ETH_Init 1 */
heth.Instance = ETH;
MACAddr[0] = 0x80;
MACAddr[1] = 0x80;
MACAddr[2] = 0xA2;
MACAddr[3] = 0xAE;
MACAddr[4] = 0x13;
MACAddr[5] = 0x41;
heth.Init.MACAddr = &MACAddr[0];
heth.Init.MediaInterface = HAL_ETH_RMII_MODE;
heth.Init.TxDesc = DMATxDscrTab;
heth.Init.RxDesc = DMARxDscrTab;
heth.Init.RxBuffLen = 1524;
/* USER CODE BEGIN MACADDRESS */
/* USER CODE END MACADDRESS */
if (HAL_ETH_Init(&heth) != HAL_OK)
{
Error_Handler();
}
memset(&TxConfig, 0 , sizeof(ETH_TxPacketConfig));
TxConfig.Attributes = ETH_TX_PACKETS_FEATURES_CSUM | ETH_TX_PACKETS_FEATURES_CRCPAD;
TxConfig.ChecksumCtrl = ETH_CHECKSUM_IPHDR_PAYLOAD_INSERT_PHDR_CALC;
TxConfig.CRCPadCtrl = ETH_CRC_PAD_INSERT;
/* USER CODE BEGIN ETH_Init 2 */
/* USER CODE END ETH_Init 2 */
}
/**
* #brief RTC Initialization Function
* #param None
* #retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* #brief SPI2 Initialization Function
* #param None
* #retval None
*/
static void MX_SPI2_Init(void)
{
/* USER CODE BEGIN SPI2_Init 0 */
/* USER CODE END SPI2_Init 0 */
/* USER CODE BEGIN SPI2_Init 1 */
/* USER CODE END SPI2_Init 1 */
/* SPI2 parameter configuration*/
hspi2.Instance = SPI2;
hspi2.Init.Mode = SPI_MODE_MASTER;
hspi2.Init.Direction = SPI_DIRECTION_2LINES;
hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi2.Init.NSS = SPI_NSS_SOFT;
hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi2.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI2_Init 2 */
/* USER CODE END SPI2_Init 2 */
}
/**
* #brief TIM1 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim1, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* #brief TIM3 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* #brief TIM4 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim4, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
}
/**
* #brief UART5 Initialization Function
* #param None
* #retval None
*/
static void MX_UART5_Init(void)
{
/* USER CODE BEGIN UART5_Init 0 */
/* USER CODE END UART5_Init 0 */
/* USER CODE BEGIN UART5_Init 1 */
/* USER CODE END UART5_Init 1 */
huart5.Instance = UART5;
huart5.Init.BaudRate = 115200;
huart5.Init.WordLength = UART_WORDLENGTH_8B;
huart5.Init.StopBits = UART_STOPBITS_1;
huart5.Init.Parity = UART_PARITY_NONE;
huart5.Init.Mode = UART_MODE_TX_RX;
huart5.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart5.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart5) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART5_Init 2 */
/* USER CODE END UART5_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream1_IRQn);
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOE, ENCODER0_REVERSE_Pin|ENCODER1_REVERSE_Pin|LCD_RESET_Pin|CAMERA_RESET_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, ENCODER2_REVERSE_Pin|SDCARD_CS_Pin|LDAC_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(TOUCH_CS_GPIO_Port, TOUCH_CS_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_LCD_ON_GPIO_Port, LED_LCD_ON_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, ETH_RESET_Pin|OUTPUT3_Pin|OUTPUT2_Pin|SIO_C_Pin
|SIO_D_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, OUTPUT1_Pin|OUTPUT0_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : ENCODER0_REVERSE_Pin ENCODER1_REVERSE_Pin LCD_RESET_Pin CAMERA_RESET_Pin */
GPIO_InitStruct.Pin = ENCODER0_REVERSE_Pin|ENCODER1_REVERSE_Pin|LCD_RESET_Pin|CAMERA_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pins : ENCODER2_REVERSE_Pin SDCARD_CS_Pin LDAC_Pin */
GPIO_InitStruct.Pin = ENCODER2_REVERSE_Pin|SDCARD_CS_Pin|LDAC_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : TOUCH_CS_Pin */
GPIO_InitStruct.Pin = TOUCH_CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(TOUCH_CS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : TOUCH_IRQ_Pin */
GPIO_InitStruct.Pin = TOUCH_IRQ_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(TOUCH_IRQ_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LED_LCD_ON_Pin */
GPIO_InitStruct.Pin = LED_LCD_ON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_LCD_ON_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : ETH_RESET_Pin OUTPUT3_Pin OUTPUT2_Pin */
GPIO_InitStruct.Pin = ETH_RESET_Pin|OUTPUT3_Pin|OUTPUT2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : INPUT2_Pin */
GPIO_InitStruct.Pin = INPUT2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(INPUT2_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : INPUT0_Pin INPUT1_Pin */
GPIO_InitStruct.Pin = INPUT0_Pin|INPUT1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : INPUT3_Pin */
GPIO_InitStruct.Pin = INPUT3_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(INPUT3_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : OUTPUT1_Pin OUTPUT0_Pin */
GPIO_InitStruct.Pin = OUTPUT1_Pin|OUTPUT0_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : SIO_C_Pin SIO_D_Pin */
GPIO_InitStruct.Pin = SIO_C_Pin|SIO_D_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* FSMC initialization function */
static void MX_FSMC_Init(void)
{
/* USER CODE BEGIN FSMC_Init 0 */
/* USER CODE END FSMC_Init 0 */
FSMC_NORSRAM_TimingTypeDef Timing = {0};
/* USER CODE BEGIN FSMC_Init 1 */
/* USER CODE END FSMC_Init 1 */
/** Perform the SRAM1 memory initialization sequence
*/
hsram1.Instance = FSMC_NORSRAM_DEVICE;
hsram1.Extended = FSMC_NORSRAM_EXTENDED_DEVICE;
/* hsram1.Init */
hsram1.Init.NSBank = FSMC_NORSRAM_BANK1;
hsram1.Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE;
hsram1.Init.MemoryType = FSMC_MEMORY_TYPE_SRAM;
hsram1.Init.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_16;
hsram1.Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE;
hsram1.Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW;
hsram1.Init.WrapMode = FSMC_WRAP_MODE_DISABLE;
hsram1.Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS;
hsram1.Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE;
hsram1.Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE;
hsram1.Init.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE;
hsram1.Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE;
hsram1.Init.WriteBurst = FSMC_WRITE_BURST_DISABLE;
hsram1.Init.PageSize = FSMC_PAGE_SIZE_NONE;
/* Timing */
Timing.AddressSetupTime = 10;
Timing.AddressHoldTime = 15;
Timing.DataSetupTime = 20;
Timing.BusTurnAroundDuration = 0;
Timing.CLKDivision = 16;
Timing.DataLatency = 17;
Timing.AccessMode = FSMC_ACCESS_MODE_A;
/* ExtTiming */
if (HAL_SRAM_Init(&hsram1, &Timing, NULL) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FSMC_Init 2 */
/* USER CODE END FSMC_Init 2 */
}
Update:
I found a DMA error code.
I get that error from here. See arrow
/* ETH DMA Error */
if (__HAL_ETH_DMA_GET_IT(heth, ETH_DMASR_AIS))
{
if (__HAL_ETH_DMA_GET_IT_SOURCE(heth, ETH_DMAIER_AISE))
{
heth->ErrorCode |= HAL_ETH_ERROR_DMA;
/* if fatal bus error occurred */
if (__HAL_ETH_DMA_GET_IT(heth, ETH_DMASR_FBES))
{
/* Get DMA error code */
heth->DMAErrorCode = READ_BIT(heth->Instance->DMASR, (ETH_DMASR_FBES | ETH_DMASR_TPS | ETH_DMASR_RPS)); <<--- HERE!
/* Disable all interrupts */
__HAL_ETH_DMA_DISABLE_IT(heth, ETH_DMAIER_NISE | ETH_DMAIER_AISE);
/* Set HAL state to ERROR */
heth->gState = HAL_ETH_STATE_ERROR;
}
else
{
/* Get DMA error status */
heth->DMAErrorCode = READ_BIT(heth->Instance->DMASR, (ETH_DMASR_ETS | ETH_DMASR_RWTS |
ETH_DMASR_RBUS | ETH_DMASR_AIS));
/* Clear the interrupt summary flag */
__HAL_ETH_DMA_CLEAR_IT(heth, (ETH_DMASR_ETS | ETH_DMASR_RWTS |
ETH_DMASR_RBUS | ETH_DMASR_AIS));
}
The error message says that DMA is not avaiable for ETH. Is that a bug then?

STM32F1 ADC_DMA and USART_DMA_TX

I try to finish the code about: ADC using DMA and then the data transfer through PC by using USART. I want to use USART_DMA to avoid occupying CPU. I use sample frequency rate 1000Hz by using array ADC[] and delay 1ms (delay here mean I use systemtick, you haven't check this point I am sure it work well).
In this code below, have I missed something?
So here my code:
USART_DMA code:
/* USARTx configured as follow:
- BaudRate = 115200 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
*/
#include "USART.h"
char TxBuffer[16];
USART_InitTypeDef USART_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
void USART_Configuration(unsigned int BaudRate)
{
/* Characteristic of USART*/
USART_InitStructure.USART_BaudRate = BaudRate;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART1, &USART_InitStructure);
/* Enable USART*/
USART_Cmd(USART1, ENABLE);
}
void DMA_Configuration(void)
{
DMA_DeInit(DMA1_Channel2);
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)TxBuffer; // send buffer
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&USART1->DR;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; // Transmit
DMA_InitStructure.DMA_BufferSize = 1;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel2, &DMA_InitStructure);
DMA_Cmd(DMA1_Channel2, ENABLE);
USART_DMACmd(USART1, USART_DMAReq_Tx, ENABLE);
while (DMA_GetFlagStatus(DMA1_FLAG_TC2) == RESET)
{}
}
ADC_DMA code:
#include "ADC_DMA.h"
uint32_t ADCValue[2] = {0};
void ADC_DMA(void){
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
/* DMA Configure */
DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&ADCValue; // address of array data
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&(ADC1->DR));
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 2; // kich thuoc mang du lieu tuong ung so phan tu cua ADCValue
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
/* DMA1_Stream0 enable */
DMA_Cmd(DMA1_Channel1, ENABLE);
/* ADC Common Init */
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 2; //so kenh ADC chuyen doi
ADC_Init(ADC1, &ADC_InitStructure);
/* ADC1 regular channels configuration */
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_7Cycles5);
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_7Cycles5);
/* Enable ADC DMA */
ADC_DMACmd(ADC1, ENABLE);
/* Enable ADC1 */
ADC_Cmd(ADC1, ENABLE);
/* Enable ADC1 reset calibration register */
ADC_ResetCalibration(ADC1);
/* Check the end of ADC1 reset calibration register */
while(ADC_GetResetCalibrationStatus(ADC1));
/* Start ADC1 calibration */
ADC_StartCalibration(ADC1);
/* Check the end of ADC1 calibration */
while(ADC_GetCalibrationStatus(ADC1));
/* Start ADC1 Software Conversion */
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}
Main function:
#include "stm32f10x.h"
#include "stdio.h"
#include "ADC_DMA.h"
#include "USART.h"
/* Declare variable*/
__IO uint16_t x,y;
extern uint32_t time=0;
extern uint32_t ADCValue[];
extern char TxBuffer[16];
GPIO_InitTypeDef GPIO_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
void GPIO_Configuration(void);
void Delay(__IO uint32_t nCount);
int main()
{
GPIO_Configuration();
ADC_DMA();
RCC_DeInit();
USART_Configuration(115200);
SysTick_Config(SystemCoreClock / 1000);
/****************************************
*SystemFrequency/1000 1ms *
*SystemFrequency/100000 10us *
*SystemFrequency/1000000 1us *
*****************************************/
while(1)
{
Delay(1000); // 100000 = 100ms
x = ADCValue[0];
y = ADCValue[1];
}
sprintf(TxBuffer,"%d#\n%d$\n", x,y);
}
}
void GPIO_Configuration(void)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOB, ENABLE);
/* Configure PB0 PB1 in output pushpull mode */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* Configure PA0 in input mode */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Enable clock DMA1 */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
/* Enable clock ADC1 */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_GPIOA, ENABLE);
/* Configure ADC Pin PA0 & PA1 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Enable clock for USART1*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
/* Enable clock DMA1 */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
/* Configure USART Tx as alternate function */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Configure USART Rx as alternate function */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
void Delay(__IO uint32_t nCount)
{
time = nCount;
while(nCount--);
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif

STM32F401C - Discovery Board : I2C with DMA

How can I use the I2C for read data from the LSM303DLHC(Magnetometer) and store data in memory, in a buffer, via DMA ?
I try to modify the "LSM303DLHC_Read()" function to use it with the DMA but the output on the SerialChart is always 0.
Can you show me an example of I2C with DMA ?
uint16_t LSM303DLHC_DMA_Read(uint8_t DeviceAddr, uint8_t RegisterAddr, uint16_t NumByteToRead)
{
__IO uint32_t LSM303DLHC_Timeout = LSM303DLHC_LONG_TIMEOUT;
__IO uint32_t temp;
I2C_Initialization();
DMA_Config();
restart:
LSM303DLHC_Timeout = LSM303DLHC_LONG_TIMEOUT;
/* Send START condition */
I2C_GenerateSTART(LSM303DLHC_I2C, ENABLE);
/* Test on EV5 and clear it */
while (!I2C_CheckEvent(LSM303DLHC_I2C, I2C_EVENT_MASTER_MODE_SELECT))
{
if (LSM303DLHC_Timeout-- == 0)
return ERROR;
}
/* Active the needed channel Request */
I2C_DMACmd(I2C1, ENABLE);
LSM303DLHC_Timeout = LSM303DLHC_LONG_TIMEOUT;
/* Send slave address for read */
I2C_Send7bitAddress(LSM303DLHC_I2C, DeviceAddr, I2C_Direction_Transmitter);
while (!I2C_CheckEvent(LSM303DLHC_I2C,I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED))
{
if (LSM303DLHC_Timeout-- == 0)
{
I2C_ClearFlag(LSM303DLHC_I2C,I2C_FLAG_BUSY|I2C_FLAG_AF);
goto restart;
}
}
/* Clear EV6 by setting again the PE bit */
I2C_Cmd(LSM303DLHC_I2C, ENABLE);
I2C_SendData(LSM303DLHC_I2C, RegisterAddr);
/* Test on EV8 and clear it */
LSM303DLHC_Timeout = LSM303DLHC_LONG_TIMEOUT;
while (!I2C_CheckEvent(LSM303DLHC_I2C, I2C_EVENT_MASTER_BYTE_TRANSMITTED))
{
if (LSM303DLHC_Timeout-- == 0)
return ERROR;
}
if (NumByteToRead == 0x01)
{
restart3:
/* Send START condition */
I2C_GenerateSTART(LSM303DLHC_I2C, ENABLE);
while (!I2C_CheckEvent(LSM303DLHC_I2C, I2C_EVENT_MASTER_MODE_SELECT));
/* Send Slave address for read */
I2C_Send7bitAddress(LSM303DLHC_I2C, DeviceAddr, I2C_Direction_Receiver);
/* Wait until ADDR is set */
LSM303DLHC_Timeout = LSM303DLHC_LONG_TIMEOUT;
while (!I2C_GetFlagStatus(LSM303DLHC_I2C, I2C_FLAG_ADDR))
{
if (LSM303DLHC_Timeout-- == 0)
{
I2C_ClearFlag(LSM303DLHC_I2C,I2C_FLAG_BUSY|I2C_FLAG_AF);
goto restart3;
}
}
/* Clear ACK */
I2C_AcknowledgeConfig(LSM303DLHC_I2C, DISABLE);
I2C_NACKPositionConfig(LSM303DLHC_I2C, I2C_NACKPosition_Current);
__disable_irq();
/* Clear ADDR flag */
temp = LSM303DLHC_I2C->SR2;
/* Program the STOP */
I2C_GenerateSTOP(LSM303DLHC_I2C, ENABLE);
__enable_irq();
while ((I2C_GetLastEvent(LSM303DLHC_I2C) & 0x0040) != 0x000040); /* Poll on RxNE */
I2C_DMACmd(I2C1, DISABLE);
/* Read the data */
//*pBuffer = I2C_ReceiveData(LSM303DLHC_I2C);
/* Make sure that the STOP bit is cleared by Hardware before CR1 write access */
while ((LSM303DLHC_I2C->CR1&0x200) == 0x200);
/* Enable Acknowledgement to be ready for another reception */
I2C_AcknowledgeConfig(LSM303DLHC_I2C, ENABLE);
return SUCCESS;
}
}
This is the DMA configuration :
void DMA_Config(void)
{
DMA_InitTypeDef DMA_InitStructure;
/* Enable DMA clock */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);
/* Reset DMA Stream registers (for debug purpose) */
DMA_DeInit(DMA1_Stream0);
/* Check if the DMA Stream is disabled before enabling it.
Note that this step is useful when the same Stream is used multiple times:
enabled, then disabled then re-enabled... In this case, the DMA Stream disable
will be effective only at the end of the ongoing data transfer and it will
not be possible to re-configure it before making sure that the Enable bit
has been cleared by hardware. If the Stream is used only once, this step might
be bypassed. */
while (DMA_GetCmdStatus(DMA1_Stream0) != DISABLE) {}
/* Configure DMA Stream */
DMA_InitStructure.DMA_Channel = DMA_Channel_1;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)I2C_Register_DR;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)Buffer_X;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = 1 ;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA1_Stream0, &DMA_InitStructure);
/* Enable DMA Stream Transfer Complete interrupt */
DMA_ITConfig(DMA1_Stream0, DMA_IT_TC, ENABLE);
/* DMA Stream enable */
DMA_Cmd(DMA1_Stream0, ENABLE);
/* Check if the DMA Stream has been effectively enabled.
The DMA Stream Enable bit is cleared immediately by hardware if there is an
error in the configuration parameters and the transfer is no started (ie. when
wrong FIFO threshold is configured ...) */
// while ((DMA_GetCmdStatus(DMA2_Stream0) != ENABLE))
// { }
}
And this is the I2C configuration :
void I2C_Initialization(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
I2C_InitTypeDef I2C_InitStructure;
/* Enable the I2C periph */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
/* Enable SCK and SDA GPIO clocks */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB , ENABLE);
GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_I2C1);
GPIO_PinAFConfig(GPIOB, GPIO_PinSource9, GPIO_AF_I2C1);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
/* I2C SCK pin configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* I2C SDA pin configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* I2C configuration -------------------------------------------------------*/
I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;
I2C_InitStructure.I2C_OwnAddress1 = 0x00;
I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
I2C_InitStructure.I2C_ClockSpeed = 100000;
/* Apply LSM303DLHC_I2C configuration after enabling it */
I2C_Init(I2C1, &I2C_InitStructure);
/* Active the needed channel Request */
//I2C_DMACmd(I2C1, ENABLE);
/* LSM303DLHC_I2C Peripheral Enable */
I2C_Cmd(I2C1, ENABLE);
}
my first question is why you have DMA config and I2C initialization functions in read function?
I believe you're missing the configuration line for DMA1_Stream6. You'll need to alter the DMA_InitStructure and initialize the Tx stream - right now you're only initializing the Rx Stream. Something like the following should work:
DMA_InitTypeDef DMA_InitStructure;
DMA_DeInit(DMA1_Stream0); //reset DMA1 channe1 to default values;
DMA_InitStructure.DMA_Channel = DMA_Channel_1;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)I2C1_DR_ADDRESS;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)I2C_RxBuffer;
DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral;
DMA_InitStructure.DMA_BufferSize = 1;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA1_Stream0, &DMA_InitStructure);
DMA_Cmd(DMA1_Stream0, ENABLE);
while (DMA_GetCmdStatus(DMA1_Stream6) != ENABLE);
DMA_ClearFlag(DMA1_Stream0, DMA_FLAG_TCIF0 | DMA_FLAG_FEIF0 | DMA_FLAG_DMEIF0 | \
DMA_FLAG_TEIF0 | DMA_FLAG_HTIF0);
DMA_DeInit(DMA1_Stream6);
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)I2C_TxBuffer;
DMA_InitStructure.DMA_BufferSize = 1;
DMA_Init(DMA1_Stream6, &DMA_InitStructure);
DMA_Cmd(DMA1_Stream6, ENABLE);
while (DMA_GetCmdStatus(DMA1_Stream6) != ENABLE);
DMA_ClearFlag(DMA1_Stream6, DMA_FLAG_TCIF6 | DMA_FLAG_FEIF6 | DMA_FLAG_DMEIF6 | \
DMA_FLAG_TEIF6 | DMA_FLAG_HTIF6);