ST32F407 got HAL_ETH_ERROR_DMA when I plugin the ethernet cable - stm32

I have an STM32F407 with the ethernet PHY DP83848.
I cannot ping the device if I'm using the LwIP because I'm facing some errors.
I do the following steps to reproduce the error.
I start up my PCB board
I let the initialization do its job and I get no error back.
I plugin my ethernet cable
I ping a random device with a random number
Then my activity LED blink on the DP83848 and then I get an interrupt.
I get the error code 0x8. That means I'm facing DMA issues. But why?
/** #defgroup ETH_Error_Code ETH Error Code
* #{
*/
#define HAL_ETH_ERROR_NONE ((uint32_t)0x00000000U) /*!< No error */
#define HAL_ETH_ERROR_PARAM ((uint32_t)0x00000001U) /*!< Busy error */
#define HAL_ETH_ERROR_BUSY ((uint32_t)0x00000002U) /*!< Parameter error */
#define HAL_ETH_ERROR_TIMEOUT ((uint32_t)0x00000004U) /*!< Timeout error */
#define HAL_ETH_ERROR_DMA ((uint32_t)0x00000008U) /*!< DMA transfer error */
#define HAL_ETH_ERROR_MAC ((uint32_t)0x00000010U) /*!< MAC transfer error */
#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1)
#define HAL_ETH_ERROR_INVALID_CALLBACK ((uint32_t)0x00000020U) /*!< Invalid Callback error */
#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */
/**
* #}
*/
My STM32F407 does not have DMA for Ethernet. What should I do now? Is this a bug?
My complete code:
ETH_TxPacketConfig TxConfig;
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
ADC_HandleTypeDef hadc1;
CAN_HandleTypeDef hcan1;
DCMI_HandleTypeDef hdcmi;
DMA_HandleTypeDef hdma_dcmi;
ETH_HandleTypeDef heth;
RTC_HandleTypeDef hrtc;
SPI_HandleTypeDef hspi2;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;
UART_HandleTypeDef huart5;
SRAM_HandleTypeDef hsram1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_FSMC_Init(void);
static void MX_DCMI_Init(void);
static void MX_SPI2_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM3_Init(void);
static void MX_ADC1_Init(void);
static void MX_CAN1_Init(void);
static void MX_RTC_Init(void);
static void MX_TIM4_Init(void);
static void MX_DMA_Init(void);
static void MX_UART5_Init(void);
static void MX_ETH_Init(void);
/* USER CODE BEGIN PFP */
void demoLCD(int i);
unsigned long testFillScreen();
unsigned long testText();
unsigned long testLines(uint16_t color);
unsigned long testFastLines(uint16_t color1, uint16_t color2);
unsigned long testRects(uint16_t color);
unsigned long testFilledRects(uint16_t color1, uint16_t color2);
unsigned long testFilledCircles(uint8_t radius, uint16_t color);
unsigned long testCircles(uint8_t radius, uint16_t color);
unsigned long testTriangles();
unsigned long testFilledTriangles();
unsigned long testRoundRects();
unsigned long testFilledRoundRects();
unsigned long testDrawImage();
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void HAL_ETH_RxAllocateCallback(uint8_t **buff){
}
void HAL_ETH_RxLinkCallback(void **pStart, void **pEnd, uint8_t *buff, uint16_t Length){
}
void HAL_ETH_TxFreeCallback(uint32_t *buff){
}
void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth){
}
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth){
}
void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth){
uint32_t errorCode = heth->ErrorCode;
}
void HAL_ETH_PMTCallback(ETH_HandleTypeDef *heth){
}
void HAL_ETH_WakeUpCallback(ETH_HandleTypeDef *heth){
}
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_FSMC_Init();
MX_DCMI_Init();
MX_SPI2_Init();
MX_TIM1_Init();
MX_TIM3_Init();
MX_ADC1_Init();
MX_CAN1_Init();
MX_RTC_Init();
MX_TIM4_Init();
MX_DMA_Init();
MX_UART5_Init();
MX_ETH_Init();
/* USER CODE BEGIN 2 */
/* Start up LCD */
HAL_GPIO_WritePin(LCD_RESET_GPIO_Port, LCD_RESET_Pin, GPIO_PIN_SET);
LCD_BL_ON();
lcdInit();
HAL_GPIO_WritePin(ETH_RESET_GPIO_Port, ETH_RESET_Pin, GPIO_PIN_RESET);
HAL_Delay(1);
HAL_GPIO_WritePin(ETH_RESET_GPIO_Port, ETH_RESET_Pin, GPIO_PIN_SET);
/* Enable interrupt */
HAL_ETH_Start_IT(&heth);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 50;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV8;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief ADC1 Initialization Function
* #param None
* #retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* #brief CAN1 Initialization Function
* #param None
* #retval None
*/
static void MX_CAN1_Init(void)
{
/* USER CODE BEGIN CAN1_Init 0 */
/* USER CODE END CAN1_Init 0 */
/* USER CODE BEGIN CAN1_Init 1 */
/* USER CODE END CAN1_Init 1 */
hcan1.Instance = CAN1;
hcan1.Init.Prescaler = 16;
hcan1.Init.Mode = CAN_MODE_NORMAL;
hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan1.Init.TimeSeg1 = CAN_BS1_1TQ;
hcan1.Init.TimeSeg2 = CAN_BS2_1TQ;
hcan1.Init.TimeTriggeredMode = DISABLE;
hcan1.Init.AutoBusOff = DISABLE;
hcan1.Init.AutoWakeUp = DISABLE;
hcan1.Init.AutoRetransmission = DISABLE;
hcan1.Init.ReceiveFifoLocked = DISABLE;
hcan1.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CAN1_Init 2 */
/* USER CODE END CAN1_Init 2 */
}
/**
* #brief DCMI Initialization Function
* #param None
* #retval None
*/
static void MX_DCMI_Init(void)
{
/* USER CODE BEGIN DCMI_Init 0 */
/* USER CODE END DCMI_Init 0 */
/* USER CODE BEGIN DCMI_Init 1 */
/* USER CODE END DCMI_Init 1 */
hdcmi.Instance = DCMI;
hdcmi.Init.SynchroMode = DCMI_SYNCHRO_HARDWARE;
hdcmi.Init.PCKPolarity = DCMI_PCKPOLARITY_RISING;
hdcmi.Init.VSPolarity = DCMI_VSPOLARITY_HIGH;
hdcmi.Init.HSPolarity = DCMI_HSPOLARITY_LOW;
hdcmi.Init.CaptureRate = DCMI_CR_ALL_FRAME;
hdcmi.Init.ExtendedDataMode = DCMI_EXTEND_DATA_8B;
hdcmi.Init.JPEGMode = DCMI_JPEG_DISABLE;
if (HAL_DCMI_Init(&hdcmi) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DCMI_Init 2 */
/* USER CODE END DCMI_Init 2 */
}
/**
* #brief ETH Initialization Function
* #param None
* #retval None
*/
static void MX_ETH_Init(void)
{
/* USER CODE BEGIN ETH_Init 0 */
/* USER CODE END ETH_Init 0 */
static uint8_t MACAddr[6];
/* USER CODE BEGIN ETH_Init 1 */
/* USER CODE END ETH_Init 1 */
heth.Instance = ETH;
MACAddr[0] = 0x80;
MACAddr[1] = 0x80;
MACAddr[2] = 0xA2;
MACAddr[3] = 0xAE;
MACAddr[4] = 0x13;
MACAddr[5] = 0x41;
heth.Init.MACAddr = &MACAddr[0];
heth.Init.MediaInterface = HAL_ETH_RMII_MODE;
heth.Init.TxDesc = DMATxDscrTab;
heth.Init.RxDesc = DMARxDscrTab;
heth.Init.RxBuffLen = 1524;
/* USER CODE BEGIN MACADDRESS */
/* USER CODE END MACADDRESS */
if (HAL_ETH_Init(&heth) != HAL_OK)
{
Error_Handler();
}
memset(&TxConfig, 0 , sizeof(ETH_TxPacketConfig));
TxConfig.Attributes = ETH_TX_PACKETS_FEATURES_CSUM | ETH_TX_PACKETS_FEATURES_CRCPAD;
TxConfig.ChecksumCtrl = ETH_CHECKSUM_IPHDR_PAYLOAD_INSERT_PHDR_CALC;
TxConfig.CRCPadCtrl = ETH_CRC_PAD_INSERT;
/* USER CODE BEGIN ETH_Init 2 */
/* USER CODE END ETH_Init 2 */
}
/**
* #brief RTC Initialization Function
* #param None
* #retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* #brief SPI2 Initialization Function
* #param None
* #retval None
*/
static void MX_SPI2_Init(void)
{
/* USER CODE BEGIN SPI2_Init 0 */
/* USER CODE END SPI2_Init 0 */
/* USER CODE BEGIN SPI2_Init 1 */
/* USER CODE END SPI2_Init 1 */
/* SPI2 parameter configuration*/
hspi2.Instance = SPI2;
hspi2.Init.Mode = SPI_MODE_MASTER;
hspi2.Init.Direction = SPI_DIRECTION_2LINES;
hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi2.Init.NSS = SPI_NSS_SOFT;
hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi2.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI2_Init 2 */
/* USER CODE END SPI2_Init 2 */
}
/**
* #brief TIM1 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim1, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* #brief TIM3 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* #brief TIM4 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim4, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
}
/**
* #brief UART5 Initialization Function
* #param None
* #retval None
*/
static void MX_UART5_Init(void)
{
/* USER CODE BEGIN UART5_Init 0 */
/* USER CODE END UART5_Init 0 */
/* USER CODE BEGIN UART5_Init 1 */
/* USER CODE END UART5_Init 1 */
huart5.Instance = UART5;
huart5.Init.BaudRate = 115200;
huart5.Init.WordLength = UART_WORDLENGTH_8B;
huart5.Init.StopBits = UART_STOPBITS_1;
huart5.Init.Parity = UART_PARITY_NONE;
huart5.Init.Mode = UART_MODE_TX_RX;
huart5.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart5.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart5) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART5_Init 2 */
/* USER CODE END UART5_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream1_IRQn);
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOE, ENCODER0_REVERSE_Pin|ENCODER1_REVERSE_Pin|LCD_RESET_Pin|CAMERA_RESET_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, ENCODER2_REVERSE_Pin|SDCARD_CS_Pin|LDAC_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(TOUCH_CS_GPIO_Port, TOUCH_CS_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_LCD_ON_GPIO_Port, LED_LCD_ON_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, ETH_RESET_Pin|OUTPUT3_Pin|OUTPUT2_Pin|SIO_C_Pin
|SIO_D_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, OUTPUT1_Pin|OUTPUT0_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : ENCODER0_REVERSE_Pin ENCODER1_REVERSE_Pin LCD_RESET_Pin CAMERA_RESET_Pin */
GPIO_InitStruct.Pin = ENCODER0_REVERSE_Pin|ENCODER1_REVERSE_Pin|LCD_RESET_Pin|CAMERA_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pins : ENCODER2_REVERSE_Pin SDCARD_CS_Pin LDAC_Pin */
GPIO_InitStruct.Pin = ENCODER2_REVERSE_Pin|SDCARD_CS_Pin|LDAC_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : TOUCH_CS_Pin */
GPIO_InitStruct.Pin = TOUCH_CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(TOUCH_CS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : TOUCH_IRQ_Pin */
GPIO_InitStruct.Pin = TOUCH_IRQ_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(TOUCH_IRQ_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LED_LCD_ON_Pin */
GPIO_InitStruct.Pin = LED_LCD_ON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_LCD_ON_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : ETH_RESET_Pin OUTPUT3_Pin OUTPUT2_Pin */
GPIO_InitStruct.Pin = ETH_RESET_Pin|OUTPUT3_Pin|OUTPUT2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : INPUT2_Pin */
GPIO_InitStruct.Pin = INPUT2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(INPUT2_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : INPUT0_Pin INPUT1_Pin */
GPIO_InitStruct.Pin = INPUT0_Pin|INPUT1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : INPUT3_Pin */
GPIO_InitStruct.Pin = INPUT3_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(INPUT3_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : OUTPUT1_Pin OUTPUT0_Pin */
GPIO_InitStruct.Pin = OUTPUT1_Pin|OUTPUT0_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : SIO_C_Pin SIO_D_Pin */
GPIO_InitStruct.Pin = SIO_C_Pin|SIO_D_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* FSMC initialization function */
static void MX_FSMC_Init(void)
{
/* USER CODE BEGIN FSMC_Init 0 */
/* USER CODE END FSMC_Init 0 */
FSMC_NORSRAM_TimingTypeDef Timing = {0};
/* USER CODE BEGIN FSMC_Init 1 */
/* USER CODE END FSMC_Init 1 */
/** Perform the SRAM1 memory initialization sequence
*/
hsram1.Instance = FSMC_NORSRAM_DEVICE;
hsram1.Extended = FSMC_NORSRAM_EXTENDED_DEVICE;
/* hsram1.Init */
hsram1.Init.NSBank = FSMC_NORSRAM_BANK1;
hsram1.Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE;
hsram1.Init.MemoryType = FSMC_MEMORY_TYPE_SRAM;
hsram1.Init.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_16;
hsram1.Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE;
hsram1.Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW;
hsram1.Init.WrapMode = FSMC_WRAP_MODE_DISABLE;
hsram1.Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS;
hsram1.Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE;
hsram1.Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE;
hsram1.Init.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE;
hsram1.Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE;
hsram1.Init.WriteBurst = FSMC_WRITE_BURST_DISABLE;
hsram1.Init.PageSize = FSMC_PAGE_SIZE_NONE;
/* Timing */
Timing.AddressSetupTime = 10;
Timing.AddressHoldTime = 15;
Timing.DataSetupTime = 20;
Timing.BusTurnAroundDuration = 0;
Timing.CLKDivision = 16;
Timing.DataLatency = 17;
Timing.AccessMode = FSMC_ACCESS_MODE_A;
/* ExtTiming */
if (HAL_SRAM_Init(&hsram1, &Timing, NULL) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FSMC_Init 2 */
/* USER CODE END FSMC_Init 2 */
}
Update:
I found a DMA error code.
I get that error from here. See arrow
/* ETH DMA Error */
if (__HAL_ETH_DMA_GET_IT(heth, ETH_DMASR_AIS))
{
if (__HAL_ETH_DMA_GET_IT_SOURCE(heth, ETH_DMAIER_AISE))
{
heth->ErrorCode |= HAL_ETH_ERROR_DMA;
/* if fatal bus error occurred */
if (__HAL_ETH_DMA_GET_IT(heth, ETH_DMASR_FBES))
{
/* Get DMA error code */
heth->DMAErrorCode = READ_BIT(heth->Instance->DMASR, (ETH_DMASR_FBES | ETH_DMASR_TPS | ETH_DMASR_RPS)); <<--- HERE!
/* Disable all interrupts */
__HAL_ETH_DMA_DISABLE_IT(heth, ETH_DMAIER_NISE | ETH_DMAIER_AISE);
/* Set HAL state to ERROR */
heth->gState = HAL_ETH_STATE_ERROR;
}
else
{
/* Get DMA error status */
heth->DMAErrorCode = READ_BIT(heth->Instance->DMASR, (ETH_DMASR_ETS | ETH_DMASR_RWTS |
ETH_DMASR_RBUS | ETH_DMASR_AIS));
/* Clear the interrupt summary flag */
__HAL_ETH_DMA_CLEAR_IT(heth, (ETH_DMASR_ETS | ETH_DMASR_RWTS |
ETH_DMASR_RBUS | ETH_DMASR_AIS));
}
The error message says that DMA is not avaiable for ETH. Is that a bug then?

Related

f_write function writes works sometimes and sometimes doesn't work

I have a problem. Im trying to store data in USB flash card using FATFS. I flash this program into my stm and then when LEDs flashed i remove USB and put it into my computer. Sometimes f_write writes data in 1234.txt , sometimes not, so file size is 0 kB. Please help me.
/* USER CODE BEGIN Header */
/**
******************************************************************************
* #file : main.c
* #brief : Main program body
******************************************************************************
* #attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"
#include "usb_host.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
volatile uint16_t ADC_Data[4];
float u[4];
char str[12];
extern ApplicationTypeDef Appli_state;
FATFS USBDISKFatFs;
FIL MyFile;
extern USBH_HandleTypeDef hUsbHostFS;
uint8_t wtext[] = "HELLO HELLO HELLO\n";
FRESULT res;
uint8_t byteswritten;
uint8_t bytesread;
uint8_t rtext[] = "";
int i=0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_ADC1_Init(void);
void MX_USB_HOST_Process(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void FileReadWrite(void) {
/************************************* FILE WRITE ********************************************/
if (f_mount (&USBDISKFatFs, (TCHAR const*)USBHPath, 0) != FR_OK)
{
Error_Handler();
}
else
{
if(f_open(&MyFile,"1234.txt", FA_CREATE_ALWAYS | FA_WRITE) != FR_OK)
{
Error_Handler();
}
else
{
for(int i=0; i<5;i++)
{ sprintf(str, "%d\n", ADC_Data[0]);
res = f_write(&MyFile, wtext, sizeof(wtext), (void*)&byteswritten);
}
f_close(&MyFile);
/* res = f_write(&MyFile, wtext, sizeof(wtext), (void*)&byteswritten);
if ((byteswritten == 0) || (res != FR_OK))
{
Error_Handler();
}
else
{
//f_lseek(&MyFile, sizeof(MyFile));
//f_sync(&MyFile);
HAL_Delay(100);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_15, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_13, GPIO_PIN_SET);
} */
}
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12, GPIO_PIN_SET);
}
/************************************* FILE WRITE ********************************************/
/************************************* FILE READ ********************************************/
if (f_mount (&USBDISKFatFs, (TCHAR const*)USBHPath, 0) != FR_OK)
{
Error_Handler();
}
else
{
if(f_open(&MyFile,"1234.txt", FA_READ) != FR_OK)
{
Error_Handler();
}
else
{
res = f_read(&MyFile, wtext, sizeof(wtext), (void*)&bytesread);
if ((bytesread == 0) || (res != FR_OK))
{
Error_Handler();
}
else
{
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_15, GPIO_PIN_SET);
}
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_15, GPIO_PIN_SET);
}
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12, GPIO_PIN_SET);
}
}
/************************************* FILE READ ********************************************/
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USB_HOST_Init();
MX_FATFS_Init();
MX_USART2_UART_Init();
MX_ADC1_Init();
/* USER CODE BEGIN 2 */
MX_DriverVbusFS(0);
HAL_ADC_Start_DMA(&hadc1,(uint32_t*) &ADC_Data,4);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1) {
/* USER CODE END WHILE */
MX_USB_HOST_Process();
/* USER CODE BEGIN 3 */
// sprintf(str, "%d\n", ADC_Data[0]); // преобразование в строку
if (Appli_state == APPLICATION_START) {
FileReadWrite();
} else if (Appli_state == APPLICATION_IDLE) {
}
}
HAL_UART_Transmit_IT(&huart2, wtext, sizeof(wtext));
HAL_Delay(15);
HAL_UART_AbortTransmit(&huart2);
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief ADC1 Initialization Function
* #param None
* #retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 4;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_5;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_6;
sConfig.Rank = 3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_7;
sConfig.Rank = 4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* #brief USART2 Initialization Function
* #param None
* #retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(CS_I2C_SPI_GPIO_Port, CS_I2C_SPI_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(OTG_FS_PowerSwitchOn_GPIO_Port, OTG_FS_PowerSwitchOn_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, LD4_Pin|LD3_Pin|LD5_Pin|LD6_Pin
|Audio_RST_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : CS_I2C_SPI_Pin */
GPIO_InitStruct.Pin = CS_I2C_SPI_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(CS_I2C_SPI_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : OTG_FS_PowerSwitchOn_Pin */
GPIO_InitStruct.Pin = OTG_FS_PowerSwitchOn_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(OTG_FS_PowerSwitchOn_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PDM_OUT_Pin */
GPIO_InitStruct.Pin = PDM_OUT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI2;
HAL_GPIO_Init(PDM_OUT_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : BOOT1_Pin */
GPIO_InitStruct.Pin = BOOT1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(BOOT1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : CLK_IN_Pin */
GPIO_InitStruct.Pin = CLK_IN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI2;
HAL_GPIO_Init(CLK_IN_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : LD4_Pin LD3_Pin LD5_Pin LD6_Pin
Audio_RST_Pin */
GPIO_InitStruct.Pin = LD4_Pin|LD3_Pin|LD5_Pin|LD6_Pin
|Audio_RST_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : I2S3_MCK_Pin I2S3_SCK_Pin I2S3_SD_Pin */
GPIO_InitStruct.Pin = I2S3_MCK_Pin|I2S3_SCK_Pin|I2S3_SD_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : OTG_FS_OverCurrent_Pin */
GPIO_InitStruct.Pin = OTG_FS_OverCurrent_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(OTG_FS_OverCurrent_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : Audio_SCL_Pin Audio_SDA_Pin */
GPIO_InitStruct.Pin = Audio_SCL_Pin|Audio_SDA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF4_I2C1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : MEMS_INT2_Pin */
GPIO_InitStruct.Pin = MEMS_INT2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(MEMS_INT2_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* #brief This function is executed in case of error occurrence.
* #retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
while (1) {
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
HAL_Delay(500);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
HAL_Delay(500);
}
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* #brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* #param file: pointer to the source file name
* #param line: assert_param error line source number
* #retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
Also, how can i know that f_write worked?
Can I use FIL flag to know does it work or not?

Reading ADC with STM32H750 Discovery Kit

i want to read out a single ADC (temperature sensor) via polling method and want to display the result on the Display. On the backside of the board are some standard arduino connectors, i used them to connect the temperature sensor (CN7 -> A0 -> PC0 ).
The problem is, that it is not working despite i used only standard code in the default task for reading it:
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "libjpeg.h"
#include "app_touchgfx.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stm32h750b_discovery_qspi.h"
#include "stm32h750b_discovery_sdram.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
CRC_HandleTypeDef hcrc;
DMA2D_HandleTypeDef hdma2d;
JPEG_HandleTypeDef hjpeg;
MDMA_HandleTypeDef hmdma_jpeg_infifo_th;
MDMA_HandleTypeDef hmdma_jpeg_outfifo_th;
LTDC_HandleTypeDef hltdc;
QSPI_HandleTypeDef hqspi;
SDRAM_HandleTypeDef hsdram2;
/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
.name = "defaultTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for GUITask */
osThreadId_t GUITaskHandle;
const osThreadAttr_t GUITask_attributes = {
.name = "GUITask",
.stack_size = 8192 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for videoTask */
osThreadId_t videoTaskHandle;
const osThreadAttr_t videoTask_attributes = {
.name = "videoTask",
.stack_size = 1000 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MPU_Config(void);
static void MX_GPIO_Init(void);
static void MX_CRC_Init(void);
static void MX_LTDC_Init(void);
static void MX_DMA2D_Init(void);
static void MX_QUADSPI_Init(void);
static void MX_FMC_Init(void);
static void MX_JPEG_Init(void);
static void MX_MDMA_Init(void);
static void MX_ADC1_Init(void);
void StartDefaultTask(void *argument);
extern void TouchGFX_Task(void *argument);
extern void videoTaskFunc(void *argument);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
double Temp1 = 0;
double resistance1;
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MPU Configuration--------------------------------------------------------*/
MPU_Config();
/* Enable I-Cache---------------------------------------------------------*/
SCB_EnableICache();
/* Enable D-Cache---------------------------------------------------------*/
SCB_EnableDCache();
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* Explicit enabling interrupt to support debugging in CubeIDE when using external flash loader */
__enable_irq();
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_CRC_Init();
MX_LTDC_Init();
MX_DMA2D_Init();
MX_FMC_Init();
MX_LIBJPEG_Init();
MX_JPEG_Init();
MX_MDMA_Init();
MX_ADC1_Init();
MX_TouchGFX_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Init scheduler */
osKernelInitialize();
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* creation of defaultTask */
defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);
/* creation of GUITask */
GUITaskHandle = osThreadNew(TouchGFX_Task, NULL, &GUITask_attributes);
/* creation of videoTask */
videoTaskHandle = osThreadNew(videoTaskFunc, NULL, &videoTask_attributes);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* USER CODE BEGIN RTOS_EVENTS */
/* add events, ... */
/* USER CODE END RTOS_EVENTS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Supply configuration update enable
*/
HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
/** Macro to configure the PLL clock source
*/
__HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_HSE);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 5;
RCC_OscInitStruct.PLL.PLLN = 160;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 4;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief ADC1 Initialization Function
* #param None
* #retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_10;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
sConfig.OffsetSignedSaturation = DISABLE;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* #brief CRC Initialization Function
* #param None
* #retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* #brief DMA2D Initialization Function
* #param None
* #retval None
*/
static void MX_DMA2D_Init(void)
{
/* USER CODE BEGIN DMA2D_Init 0 */
/* USER CODE END DMA2D_Init 0 */
/* USER CODE BEGIN DMA2D_Init 1 */
/* USER CODE END DMA2D_Init 1 */
hdma2d.Instance = DMA2D;
hdma2d.Init.Mode = DMA2D_M2M;
hdma2d.Init.ColorMode = DMA2D_OUTPUT_RGB565;
hdma2d.Init.OutputOffset = 0;
hdma2d.LayerCfg[1].InputOffset = 0;
hdma2d.LayerCfg[1].InputColorMode = DMA2D_INPUT_RGB565;
hdma2d.LayerCfg[1].AlphaMode = DMA2D_NO_MODIF_ALPHA;
hdma2d.LayerCfg[1].InputAlpha = 0;
hdma2d.LayerCfg[1].AlphaInverted = DMA2D_REGULAR_ALPHA;
hdma2d.LayerCfg[1].RedBlueSwap = DMA2D_RB_REGULAR;
hdma2d.LayerCfg[1].ChromaSubSampling = DMA2D_NO_CSS;
if (HAL_DMA2D_Init(&hdma2d) != HAL_OK)
{
Error_Handler();
}
if (HAL_DMA2D_ConfigLayer(&hdma2d, 1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DMA2D_Init 2 */
/* USER CODE END DMA2D_Init 2 */
}
/**
* #brief JPEG Initialization Function
* #param None
* #retval None
*/
static void MX_JPEG_Init(void)
{
/* USER CODE BEGIN JPEG_Init 0 */
/* USER CODE END JPEG_Init 0 */
/* USER CODE BEGIN JPEG_Init 1 */
/* USER CODE END JPEG_Init 1 */
hjpeg.Instance = JPEG;
if (HAL_JPEG_Init(&hjpeg) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN JPEG_Init 2 */
/* USER CODE END JPEG_Init 2 */
}
/**
* #brief LTDC Initialization Function
* #param None
* #retval None
*/
static void MX_LTDC_Init(void)
{
/* USER CODE BEGIN LTDC_Init 0 */
/* USER CODE END LTDC_Init 0 */
LTDC_LayerCfgTypeDef pLayerCfg = {0};
/* USER CODE BEGIN LTDC_Init 1 */
/* USER CODE END LTDC_Init 1 */
hltdc.Instance = LTDC;
hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL;
hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;
hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL;
hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
hltdc.Init.HorizontalSync = 39;
hltdc.Init.VerticalSync = 8;
hltdc.Init.AccumulatedHBP = 42;
hltdc.Init.AccumulatedVBP = 11;
hltdc.Init.AccumulatedActiveW = 522;
hltdc.Init.AccumulatedActiveH = 283;
hltdc.Init.TotalWidth = 528;
hltdc.Init.TotalHeigh = 285;
hltdc.Init.Backcolor.Blue = 0;
hltdc.Init.Backcolor.Green = 0;
hltdc.Init.Backcolor.Red = 0;
if (HAL_LTDC_Init(&hltdc) != HAL_OK)
{
Error_Handler();
}
pLayerCfg.WindowX0 = 0;
pLayerCfg.WindowX1 = 480;
pLayerCfg.WindowY0 = 0;
pLayerCfg.WindowY1 = 272;
pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565;
pLayerCfg.Alpha = 255;
pLayerCfg.Alpha0 = 0;
pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA;
pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA;
pLayerCfg.FBStartAdress = 0;
pLayerCfg.ImageWidth = 480;
pLayerCfg.ImageHeight = 272;
pLayerCfg.Backcolor.Blue = 0;
pLayerCfg.Backcolor.Green = 0;
pLayerCfg.Backcolor.Red = 0;
if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN LTDC_Init 2 */
/* USER CODE END LTDC_Init 2 */
}
/**
* #brief QUADSPI Initialization Function
* #param None
* #retval None
*/
static void MX_QUADSPI_Init(void)
{
/* USER CODE BEGIN QUADSPI_Init 0 */
BSP_QSPI_Init_t qspi_initParams ;
/* USER CODE END QUADSPI_Init 0 */
/* USER CODE BEGIN QUADSPI_Init 1 */
/* USER CODE END QUADSPI_Init 1 */
/* QUADSPI parameter configuration*/
hqspi.Instance = QUADSPI;
hqspi.Init.ClockPrescaler = 3;
hqspi.Init.FifoThreshold = 1;
hqspi.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_NONE;
hqspi.Init.FlashSize = 26;
hqspi.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_4_CYCLE;
hqspi.Init.ClockMode = QSPI_CLOCK_MODE_0;
hqspi.Init.DualFlash = QSPI_DUALFLASH_ENABLE;
if (HAL_QSPI_Init(&hqspi) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN QUADSPI_Init 2 */
qspi_initParams.InterfaceMode = MT25TL01G_QPI_MODE;
qspi_initParams.TransferRate = MT25TL01G_DTR_TRANSFER ;
qspi_initParams.DualFlashMode = MT25TL01G_DUALFLASH_ENABLE;
BSP_QSPI_DeInit(0);
if (BSP_QSPI_Init(0, &qspi_initParams) != BSP_ERROR_NONE)
{
Error_Handler( );
}
if(BSP_QSPI_EnableMemoryMappedMode(0) != BSP_ERROR_NONE)
{
Error_Handler( );
}
/* USER CODE END QUADSPI_Init 2 */
}
/**
* Enable MDMA controller clock
*/
static void MX_MDMA_Init(void)
{
/* MDMA controller clock enable */
__HAL_RCC_MDMA_CLK_ENABLE();
/* Local variables */
/* MDMA interrupt initialization */
/* MDMA_IRQn interrupt configuration */
HAL_NVIC_SetPriority(MDMA_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(MDMA_IRQn);
}
/* FMC initialization function */
static void MX_FMC_Init(void)
{
/* USER CODE BEGIN FMC_Init 0 */
/* USER CODE END FMC_Init 0 */
FMC_SDRAM_TimingTypeDef SdramTiming = {0};
/* USER CODE BEGIN FMC_Init 1 */
/* USER CODE END FMC_Init 1 */
/** Perform the SDRAM2 memory initialization sequence
*/
hsdram2.Instance = FMC_SDRAM_DEVICE;
/* hsdram2.Init */
hsdram2.Init.SDBank = FMC_SDRAM_BANK2;
hsdram2.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;
hsdram2.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
hsdram2.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
hsdram2.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
hsdram2.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;
hsdram2.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
hsdram2.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
hsdram2.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
hsdram2.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
/* SdramTiming */
SdramTiming.LoadToActiveDelay = 2;
SdramTiming.ExitSelfRefreshDelay = 7;
SdramTiming.SelfRefreshTime = 4;
SdramTiming.RowCycleDelay = 7;
SdramTiming.WriteRecoveryTime = 5;
SdramTiming.RPDelay = 2;
SdramTiming.RCDDelay = 2;
if (HAL_SDRAM_Init(&hsdram2, &SdramTiming) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FMC_Init 2 */
BSP_SDRAM_DeInit(0);
if(BSP_SDRAM_Init(0) != BSP_ERROR_NONE)
{
Error_Handler( );
}
/* USER CODE END FMC_Init 2 */
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOK_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOI_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOJ_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, FRAME_RATE_Pin|RENDER_TIME_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LCD_DE_GPIO_Port, LCD_DE_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOI, GPIO_PIN_13, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(VSYNC_FREQ_GPIO_Port, VSYNC_FREQ_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LCD_BL_CTRL_GPIO_Port, LCD_BL_CTRL_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, LCD_RESET_Pin|MCU_ACTIVE_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : FRAME_RATE_Pin RENDER_TIME_Pin */
GPIO_InitStruct.Pin = FRAME_RATE_Pin|RENDER_TIME_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_DE_Pin */
GPIO_InitStruct.Pin = LCD_DE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LCD_DE_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PI13 */
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
/*Configure GPIO pin : VSYNC_FREQ_Pin */
GPIO_InitStruct.Pin = VSYNC_FREQ_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(VSYNC_FREQ_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_BL_CTRL_Pin */
GPIO_InitStruct.Pin = LCD_BL_CTRL_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LCD_BL_CTRL_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PC0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_RESET_Pin */
GPIO_InitStruct.Pin = LCD_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LCD_RESET_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : MCU_ACTIVE_Pin */
GPIO_InitStruct.Pin = MCU_ACTIVE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(MCU_ACTIVE_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* #brief Function implementing the defaultTask thread.
* #param argument: Not used
* #retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
uint16_t adcvalue;
/* Infinite loop */
for(;;)
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 100);
adcvalue = HAL_ADC_GetValue(&hadc1);
HAL_ADC_Stop(&hadc1);
int resolution = 4096;
resistance1 = 10000*((adcvalue/(double)resolution)/(1-(adcvalue/(double)resolution)));
Temp1 = 1/((1/298.15)+((double)1/3435)*log((double)resistance1/10000));
Temp1 = Temp1 - 273.15;
osDelay(20);
}
/* USER CODE END 5 */
}
/* MPU Configuration */
void MPU_Config(void)
{
MPU_Region_InitTypeDef MPU_InitStruct = {0};
/* Disables the MPU */
HAL_MPU_Disable();
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.BaseAddress = 0x24000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_512KB;
MPU_InitStruct.SubRegionDisable = 0x0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.BaseAddress = 0x90000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_256MB;
MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Number = MPU_REGION_NUMBER2;
MPU_InitStruct.Size = MPU_REGION_SIZE_128MB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Number = MPU_REGION_NUMBER3;
MPU_InitStruct.BaseAddress = 0xD0000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_256MB;
MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Number = MPU_REGION_NUMBER4;
MPU_InitStruct.Size = MPU_REGION_SIZE_32MB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Enables the MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
/**
* #brief Period elapsed callback in non blocking mode
* #note This function is called when TIM6 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* #param htim : TIM handle
* #retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM6) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* #brief This function is executed in case of error occurrence.
* #retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* #brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* #param file: pointer to the source file name
* #param line: assert_param error line source number
* #retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
To display data is no problem. I used a new virtual funktion and adjusted the Screen1View.

Fifo0msgpendingcallback function doesn't work

I have two nucleo-f446re boards and I try to make a can connection between this two.
two boards work correctly when I set the operation mode in normal mode but when I connect this two and try to send data from first one to second one it doesn't go to Fifo0msgpendingcallback function and can't get data.
I have tried both fifo0 and fifo1 and still doesn't work.
transceiver code :
'''
/* USER CODE BEGIN 0 */
uint16_t adcval;
double min_adc; //min of adc when rim seal doesn't actuated
uint32_t CT2 = 0; //counter timer 2
uint32_t CT3 = 0; //counter timer 3
uint16_t stop_status=0;
uint16_t flag1 = 0;
uint16_t flag1_2 = 0;
uint16_t flag2 = 0;
uint16_t flag2_3 = 0;
uint16_t flag3 = 0;
uint16_t flag3_4 = 0;
uint16_t flag4 = 0;
uint16_t flag4_1 = 0;
CAN_TxHeaderTypeDef TxHeader;
CAN_RxHeaderTypeDef RxHeader;
uint8_t TxData[8];
uint8_t RxData[8];
uint32_t Txmailbox;
uint16_t start_flag;
uint16_t stop_flag;
uint16_t reset_flag;
/* USER CODE END 0 */
int main(void)
{
/* USER CODE BEGIN 2 */
HAL_ADC_Start_IT(&hadc1);
HAL_CAN_Start(&hcan1);
HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO0_MSG_PENDING);
float voltage;
TxHeader.DLC = 2;
TxHeader.IDE = CAN_ID_STD;
TxHeader.RTR = CAN_RTR_DATA;
TxHeader.StdId = 0x446;
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
adcval = HAL_ADC_GetValue(&hadc1);
min_adc = 4095*1.398/3.3 +100;
voltage = adcval*3.3/4095;
if(start_flag == 1){
if(voltage<0.8){
TxData[0] = 146;
TxData[1] = 50;
}
else if(0.92<voltage && voltage<3.3)// zone 1
{
flag1 = 1;
TxData[0] = 146;
TxData[1] = 1;
}
else if(0.59<voltage && voltage<0.92) // zone 1&2
{
flag1_2 = 1;
TxData[0] = 146;
TxData[1] = 12;
}
else if(0.46<voltage && voltage<0.59)// zone 2
{
flag2 = 1;
TxData[0] = 146;
TxData[1] = 2;
}
else if(0.36<voltage && voltage<0.46) // zone 2&3
{
flag2_3 = 1;
TxData[0] = 146;
TxData[1] = 23;
}
else if(0.31<voltage && voltage<0.36) // zone 3
{
flag3 = 1;
TxData[0] = 146;
TxData[1] = 3;
}
else if(0.26<voltage && voltage<0.31) // zone 3&4
{
flag3_4 = 1;
TxData[0] = 146;
TxData[1] = 34;
}
else if(0.23<voltage && voltage<0.26) // zone 4
{
flag4 = 1;
TxData[0] = 146;
TxData[1] = 4;
}
else if(0.24<voltage && voltage<0.26) // zone 4&1
{
flag4_1 = 1;
TxData[0] = 146;
TxData[1] = 41;
}
else if(1.5<voltage && voltage<3.3) // zone 4&1 2th condition
{
flag4_1 = 1;
TxData[0] = 146;
TxData[1] = 41;
}
else
{
flag1 = 0;flag1_2 = 0;flag2 = 0;
flag2_3 = 0;flag3 = 0;flag3_4 =0;
flag4 = 0;flag4_1 = 0;
}
}
if(stop_flag == 1){
flag1 = 0;flag1_2 = 0;flag2 = 0;
flag2_3 = 0;flag3 = 0;flag3_4 =0;
flag4 = 0;flag4_1 = 0;
TxData[0] = 146;
TxData[1] = 100;
}
if(reset_flag){
flag1 = 0;flag1_2 = 0;flag2 = 0;
flag2_3 = 0;flag3 = 0;flag3_4 =0;
flag4 = 0;flag4_1 = 0;
TxData[0] = 146;
TxData[1] = 200;
}
HAL_CAN_AddTxMessage(&hcan1, &TxHeader, TxData, &Txmailbox);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 84;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLRCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief ADC1 Initialization Function
* #param None
* #retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* #brief CAN1 Initialization Function
* #param None
* #retval None
*/
static void MX_CAN1_Init(void)
{
/* USER CODE BEGIN CAN1_Init 0 */
/* USER CODE END CAN1_Init 0 */
/* USER CODE BEGIN CAN1_Init 1 */
/* USER CODE END CAN1_Init 1 */
hcan1.Instance = CAN1;
hcan1.Init.Prescaler = 21;
hcan1.Init.Mode = CAN_MODE_NORMAL;
hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan1.Init.TimeSeg1 = CAN_BS1_2TQ;
hcan1.Init.TimeSeg2 = CAN_BS2_1TQ;
hcan1.Init.TimeTriggeredMode = DISABLE;
hcan1.Init.AutoBusOff = DISABLE;
hcan1.Init.AutoWakeUp = ENABLE;
hcan1.Init.AutoRetransmission = ENABLE;
hcan1.Init.ReceiveFifoLocked = DISABLE;
hcan1.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CAN1_Init 2 */
CAN_FilterTypeDef canfilterconfig;
canfilterconfig.FilterActivation = CAN_FILTER_ENABLE;
canfilterconfig.FilterBank = 18;
canfilterconfig.FilterFIFOAssignment = CAN_FILTER_FIFO0;
canfilterconfig.FilterIdHigh = 0x103<<5;
canfilterconfig.FilterIdLow = 0;
canfilterconfig.FilterMaskIdHigh = 0x103<<5;
canfilterconfig.FilterMaskIdLow = 0x0000;
canfilterconfig.FilterMode = CAN_FILTERMODE_IDMASK;
canfilterconfig.FilterScale = CAN_FILTERSCALE_32BIT;
canfilterconfig.SlaveStartFilterBank = 20;
HAL_CAN_ConfigFilter(&hcan1, &canfilterconfig);
//HAL_CAN_Init(&hcan);
/* USER CODE END CAN1_Init 2 */
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_12, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : PC1 PC2 PC3 */
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : LD2_Pin */
GPIO_InitStruct.Pin = LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PC12 */
GPIO_InitStruct.Pin = GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI1_IRQn);
HAL_NVIC_SetPriority(EXTI2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI2_IRQn);
HAL_NVIC_SetPriority(EXTI3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI3_IRQn);
}
/* USER CODE BEGIN 4 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if(GPIO_Pin == GPIO_PIN_1){
HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
start_flag = 1;
stop_flag = 0;
reset_flag = 0;
}
if(GPIO_Pin == GPIO_PIN_2){
HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
start_flag = 0;
stop_flag = 1;
reset_flag = 0;
}
if(GPIO_Pin == GPIO_PIN_3){
HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
start_flag = 0;
stop_flag = 0;
reset_flag = 1;
}
}
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
HAL_CAN_GetRxMessage(hcan, CAN_RX_FIFO0, &RxHeader, RxData);
}
/* USER CODE END 4 */
/**
* #brief This function is executed in case of error occurrence.
* #retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* #brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* #param file: pointer to the source file name
* #param line: assert_param error line source number
* #retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
'''
receiver code :
''' /* USER CODE BEGIN Header */
/**
******************************************************************************
* #file : main.c
* #brief : Main program body
******************************************************************************
* #attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CAN_HandleTypeDef hcan1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_CAN1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint16_t datacheck;
CAN_TxHeaderTypeDef TxHeader;
CAN_RxHeaderTypeDef RxHeader;
uint8_t TxData[8];
uint8_t RxData[8];
uint32_t Txmailbox;
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_CAN1_Init();
/* USER CODE BEGIN 2 */
HAL_CAN_Start(&hcan1);
HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO1_MSG_PENDING);
TxHeader.DLC = 2;
TxHeader.IDE = CAN_ID_STD;
TxHeader.RTR = CAN_RTR_DATA;
TxHeader.StdId = 0x445;
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if(datacheck==1){
if(RxData[0]==146 && RxData[1]== 200){
HAL_GPIO_WritePin(START_LED_GPIO_Port, START_LED_Pin, RESET);
HAL_GPIO_WritePin(STOP_LED_GPIO_Port, STOP_LED_Pin, RESET);
HAL_GPIO_WritePin(RESET_LED_GPIO_Port, RESET_LED_Pin, SET);
}
else if(RxData[0]==146 && RxData[1]== 100){
HAL_GPIO_WritePin(START_LED_GPIO_Port, START_LED_Pin, RESET);
HAL_GPIO_WritePin(STOP_LED_GPIO_Port, STOP_LED_Pin, SET);
HAL_GPIO_WritePin(RESET_LED_GPIO_Port, RESET_LED_Pin, RESET);
}
else if(RxData[0]==146 && RxData[1]== 1){
HAL_GPIO_WritePin(START_LED_GPIO_Port, START_LED_Pin, SET);
HAL_GPIO_WritePin(STOP_LED_GPIO_Port, STOP_LED_Pin, RESET);
HAL_GPIO_WritePin(RESET_LED_GPIO_Port, RESET_LED_Pin, RESET);
}
else if(RxData[0]==146 && RxData[1]== 12){
HAL_GPIO_WritePin(START_LED_GPIO_Port, START_LED_Pin, SET);
HAL_GPIO_WritePin(STOP_LED_GPIO_Port, STOP_LED_Pin, RESET);
HAL_GPIO_WritePin(RESET_LED_GPIO_Port, RESET_LED_Pin, RESET);
}
else if(RxData[0]==146 && RxData[1]== 41){
HAL_GPIO_WritePin(START_LED_GPIO_Port, START_LED_Pin, SET);
HAL_GPIO_WritePin(STOP_LED_GPIO_Port, STOP_LED_Pin, RESET);
HAL_GPIO_WritePin(RESET_LED_GPIO_Port, RESET_LED_Pin, RESET);
}
datacheck = 0;
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief CAN1 Initialization Function
* #param None
* #retval None
*/
static void MX_CAN1_Init(void)
{
/* USER CODE BEGIN CAN1_Init 0 */
/* USER CODE END CAN1_Init 0 */
/* USER CODE BEGIN CAN1_Init 1 */
/* USER CODE END CAN1_Init 1 */
hcan1.Instance = CAN1;
hcan1.Init.Prescaler = 21;
hcan1.Init.Mode = CAN_MODE_NORMAL;
hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan1.Init.TimeSeg1 = CAN_BS1_2TQ;
hcan1.Init.TimeSeg2 = CAN_BS2_1TQ;
hcan1.Init.TimeTriggeredMode = DISABLE;
hcan1.Init.AutoBusOff = DISABLE;
hcan1.Init.AutoWakeUp = ENABLE;
hcan1.Init.AutoRetransmission = ENABLE;
hcan1.Init.ReceiveFifoLocked = DISABLE;
hcan1.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CAN1_Init 2 */
CAN_FilterTypeDef canfilterconfig;
canfilterconfig.FilterActivation = CAN_FILTER_ENABLE;
canfilterconfig.FilterBank = 18;
canfilterconfig.FilterFIFOAssignment = CAN_FILTER_FIFO1;
canfilterconfig.FilterIdHigh = 0x446<<5;
canfilterconfig.FilterIdLow = 0;
canfilterconfig.FilterMaskIdHigh = 0x446<<5;
canfilterconfig.FilterMaskIdLow = 0x0000;
canfilterconfig.FilterMode = CAN_FILTERMODE_IDMASK;
canfilterconfig.FilterScale = CAN_FILTERSCALE_32BIT;
canfilterconfig.SlaveStartFilterBank = 20;
HAL_CAN_ConfigFilter(&hcan1, &canfilterconfig);
/* USER CODE END CAN1_Init 2 */
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, START_LED_Pin|STOP_LED_Pin|RESET_LED_Pin|LD2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : PC1 PC2 PC3 */
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : START_LED_Pin */
GPIO_InitStruct.Pin = START_LED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(START_LED_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : STOP_LED_Pin RESET_LED_Pin LD2_Pin */
GPIO_InitStruct.Pin = STOP_LED_Pin|RESET_LED_Pin|LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI1_IRQn);
HAL_NVIC_SetPriority(EXTI2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI2_IRQn);
HAL_NVIC_SetPriority(EXTI3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI3_IRQn);
}
/* USER CODE BEGIN 4 */
void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
datacheck = 2;
HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
HAL_CAN_GetRxMessage(hcan, CAN_RX_FIFO0, &RxHeader, RxData);
if(RxHeader.DLC == 2){
datacheck = 1;
}
}
/* USER CODE END 4 */
/**
* #brief This function is executed in case of error occurrence.
* #retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* #brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* #param file: pointer to the source file name
* #param line: assert_param error line source number
* #retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
'''

How to debug stm32F0 Can RX

I have a custom stm32F0 board attached over can to a raspberry pi with a CAN shield, terminating resistors and everything. I can initiate a message on the STM32F0 and see it on the RPI side, but not vice-versa. Putting an oscilloscope on the can line, I see the message coming from the RPI. Similarly, I see the message between the can transceiver and the STM32F0, so I know the message is reaching the pin. The code for doing Rx seems straight-forward enough:
set up CAN
disable filters (by setting the filter to 0x0000)
set up can RX using HAL_CAN_ActivateNotification
set up the callback function for the can rx interrupt
Yet the interrupt never gets triggered. Is my CAN RX pin bad? How do I continue the debug process?
Here is the whole main.c:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* #file : main.c
* #brief : Main program body
******************************************************************************
* #attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CAN_HandleTypeDef hcan;
SPI_HandleTypeDef hspi1;
DMA_HandleTypeDef hdma_spi1_rx;
DMA_HandleTypeDef hdma_spi1_tx;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim14;
TIM_HandleTypeDef htim16;
TIM_HandleTypeDef htim17;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_SPI1_Init(void);
static void MX_TIM16_Init(void);
static void MX_TIM14_Init(void);
static void MX_TIM17_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM3_Init(void);
static void MX_CAN_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
CAN_TxHeaderTypeDef TxHeader;
CAN_RxHeaderTypeDef RxHeader;
uint32_t TxMailbox;
uint8_t TxData[8];
uint8_t RxData[8];
uint8_t count = 0;
uint8_t testData;
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan){
count++;
HAL_CAN_GetRxMessage(hcan,CAN_RX_FIFO0,&RxHeader,RxData);
testData = RxData[0];
}
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_SPI1_Init();
MX_TIM16_Init();
MX_TIM14_Init();
MX_TIM17_Init();
MX_USART1_UART_Init();
MX_TIM3_Init();
MX_CAN_Init();
/* USER CODE BEGIN 2 */
HAL_CAN_Start(&hcan);
HAL_CAN_ActivateNotification(&hcan, CAN_IT_RX_FIFO0_MSG_PENDING);
TxHeader.DLC = 1;
TxHeader.ExtId = 0;
TxHeader.IDE = CAN_ID_STD;
TxHeader.RTR = CAN_RTR_DATA;
TxHeader.StdId = 0x103;
TxHeader.TransmitGlobalTime = DISABLE;
TxData[0] = 0xa7;
//HAL_CAN_AddTxMessage(&hcan, &TxHeader, TxData, &TxMailbox);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
// HAL_CAN_AddTxMessage(&hcan, &TxHeader, TxData, &TxMailbox);
/* Start the Transmission process */
/* if (HAL_CAN_AddTxMessage(&hcan, &TxHeader, TxData, &TxMailbox) != HAL_OK)
{
Error_Handler();
}
*/ HAL_Delay(10);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48;
RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI48;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1;
PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK1;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief CAN Initialization Function
* #param None
* #retval None
*/
static void MX_CAN_Init(void)
{
/* USER CODE BEGIN CAN_Init 0 */
/* USER CODE END CAN_Init 0 */
/* USER CODE BEGIN CAN_Init 1 */
/* USER CODE END CAN_Init 1 */
hcan.Instance = CAN;
hcan.Init.Prescaler = 6;
hcan.Init.Mode = CAN_MODE_NORMAL;
hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan.Init.TimeSeg1 = CAN_BS1_13TQ;
hcan.Init.TimeSeg2 = CAN_BS2_2TQ;
hcan.Init.TimeTriggeredMode = DISABLE;
hcan.Init.AutoBusOff = DISABLE;
hcan.Init.AutoWakeUp = DISABLE;
hcan.Init.AutoRetransmission = DISABLE;
hcan.Init.ReceiveFifoLocked = DISABLE;
hcan.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CAN_Init 2 */
CAN_FilterTypeDef filterConfig;
filterConfig.FilterActivation = ENABLE;
filterConfig.FilterBank = 0;
filterConfig.FilterFIFOAssignment = CAN_RX_FIFO0;
filterConfig.FilterIdHigh = 0x0000;
filterConfig.FilterIdLow = 0x0000;
filterConfig.FilterMaskIdHigh = 0x0000;
filterConfig.FilterMaskIdLow = 0x0000;
filterConfig.FilterMode = CAN_FILTERMODE_IDMASK;
filterConfig.FilterScale = CAN_FILTERSCALE_32BIT;
filterConfig.SlaveStartFilterBank = 14;
/* USER CODE END CAN_Init 2 */
}
/**
* #brief SPI1 Initialization Function
* #param None
* #retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 7;
hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* #brief TIM3 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 480-1;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* #brief TIM14 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM14_Init(void)
{
/* USER CODE BEGIN TIM14_Init 0 */
/* USER CODE END TIM14_Init 0 */
/* USER CODE BEGIN TIM14_Init 1 */
/* USER CODE END TIM14_Init 1 */
htim14.Instance = TIM14;
htim14.Init.Prescaler = 48000 - 1;
htim14.Init.CounterMode = TIM_COUNTERMODE_UP;
htim14.Init.Period = 10- 1;
htim14.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim14.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim14) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM14_Init 2 */
/* USER CODE END TIM14_Init 2 */
}
/**
* #brief TIM16 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM16_Init(void)
{
/* USER CODE BEGIN TIM16_Init 0 */
/* USER CODE END TIM16_Init 0 */
/* USER CODE BEGIN TIM16_Init 1 */
/* USER CODE END TIM16_Init 1 */
htim16.Instance = TIM16;
htim16.Init.Prescaler = 48000 - 1;
htim16.Init.CounterMode = TIM_COUNTERMODE_UP;
htim16.Init.Period = 10000 - 1;
htim16.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim16.Init.RepetitionCounter = 0;
htim16.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim16) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM16_Init 2 */
/* USER CODE END TIM16_Init 2 */
}
/**
* #brief TIM17 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM17_Init(void)
{
/* USER CODE BEGIN TIM17_Init 0 */
/* USER CODE END TIM17_Init 0 */
/* USER CODE BEGIN TIM17_Init 1 */
/* USER CODE END TIM17_Init 1 */
htim17.Instance = TIM17;
htim17.Init.Prescaler = 48000 - 1;
htim17.Init.CounterMode = TIM_COUNTERMODE_UP;
htim17.Init.Period = 4 - 1;
htim17.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim17.Init.RepetitionCounter = 0;
htim17.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim17) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM17_Init 2 */
/* USER CODE END TIM17_Init 2 */
}
/**
* #brief USART1 Initialization Function
* #param None
* #retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 9600;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel2_3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel2_3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel2_3_IRQn);
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_15, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, cs1_gpio_Pin|cs2_gpio_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : VCP_TX_Pin */
GPIO_InitStruct.Pin = VCP_TX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF1_USART2;
HAL_GPIO_Init(VCP_TX_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PA15 */
GPIO_InitStruct.Pin = GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : cs1_gpio_Pin cs2_gpio_Pin */
GPIO_InitStruct.Pin = cs1_gpio_Pin|cs2_gpio_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* #brief This function is executed in case of error occurrence.
* #retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* #brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* #param file: pointer to the source file name
* #param line: assert_param error line source number
* #retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
Turned out the problem was actually the can transceiver. It has a stby pin which needs to be explicitly grounded, not left floating. This allows me to send messages from my stm32f0 over CAN. Unfortunately receiving messages has not been so easy. But that is a question for a different post.
One weird thing was that even though the transceiver was the one having the problem, the fact that it was on standby was affecting the outputs to the can tx from the stm32f0. Almost like it could cause problems "upstream". This made it more difficult to debug.

STM32F429 Discovery - Unable to Use SPI with DMA for driving WS2812B LEDs

I have setup a project using STM32CubeIDE to use with my STM32F429I-DISC1 Discovery board.
I would like to use it to drive an array of WS2812B LED modules, which requires a single data line at a high frequency.
I would like to use SPI with DMA in order to transfer the data continuously to the WS2812B LED modules.
What I have currently (Having messed around a little bit to see what might be wrong):
main.c
/* USER CODE BEGIN Header */
/**
******************************************************************************
* #file : main.c
* #brief : Main program body
******************************************************************************
* #attention
*
* <h2><center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under Ultimate Liberty license
* SLA0044, the "License"; You may not use this file except in compliance with
* the License. You may obtain a copy of the License at:
* www.st.com/SLA0044
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CRC_HandleTypeDef hcrc;
I2C_HandleTypeDef hi2c3;
RNG_HandleTypeDef hrng;
SPI_HandleTypeDef hspi4;
SPI_HandleTypeDef hspi5;
DMA_HandleTypeDef hdma_spi4_tx;
TIM_HandleTypeDef htim1;
UART_HandleTypeDef huart1;
SDRAM_HandleTypeDef hsdram1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_CRC_Init(void);
static void MX_FMC_Init(void);
static void MX_I2C3_Init(void);
static void MX_SPI5_Init(void);
static void MX_TIM1_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_RNG_Init(void);
static void MX_SPI4_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_CRC_Init();
MX_FMC_Init();
MX_I2C3_Init();
MX_SPI5_Init();
MX_TIM1_Init();
MX_USART1_UART_Init();
MX_RNG_Init();
MX_SPI4_Init();
/* USER CODE BEGIN 2 */
// Setting up DMA myself?
hdma_spi4_tx.Instance = DMA2_Stream1;
hdma_spi4_tx.Init.Channel = DMA_CHANNEL_1;
hdma_spi4_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_spi4_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_spi4_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_spi4_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_spi4_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_spi4_tx.Init.Mode = DMA_CIRCULAR;
hdma_spi4_tx.Init.Priority = DMA_PRIORITY_VERY_HIGH;
hdma_spi4_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
HAL_DMA_Init(&hdma_spi4_tx);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
uint8_t LEDData_WS2812B[][3] = {
{0x92, 0x49, 0x24}, {0x92, 0x49, 0x24}, {0xDB, 0x6D, 0xB6}
};
uint8_t LEDData[][3] = { // RGB format
{0x00, 0x00, 0xFF}
};
HAL_DMA_Start(&hdma_spi4_tx, (uint32_t)LEDData_WS2812B, (uint32_t)&hspi4.Instance->DR, sizeof(LEDData_WS2812B)/sizeof(uint8_t));
HAL_SPI_Transmit_DMA(&hspi4, (uint8_t *)LEDData_WS2812B, sizeof(LEDData_WS2812B)/sizeof(uint8_t));
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 160;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 8;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief CRC Initialization Function
* #param None
* #retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* #brief I2C3 Initialization Function
* #param None
* #retval None
*/
static void MX_I2C3_Init(void)
{
/* USER CODE BEGIN I2C3_Init 0 */
/* USER CODE END I2C3_Init 0 */
/* USER CODE BEGIN I2C3_Init 1 */
/* USER CODE END I2C3_Init 1 */
hi2c3.Instance = I2C3;
hi2c3.Init.ClockSpeed = 100000;
hi2c3.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c3.Init.OwnAddress1 = 0;
hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c3.Init.OwnAddress2 = 0;
hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c3) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c3, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c3, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C3_Init 2 */
/* USER CODE END I2C3_Init 2 */
}
/**
* #brief RNG Initialization Function
* #param None
* #retval None
*/
static void MX_RNG_Init(void)
{
/* USER CODE BEGIN RNG_Init 0 */
/* USER CODE END RNG_Init 0 */
/* USER CODE BEGIN RNG_Init 1 */
/* USER CODE END RNG_Init 1 */
hrng.Instance = RNG;
if (HAL_RNG_Init(&hrng) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RNG_Init 2 */
/* USER CODE END RNG_Init 2 */
}
/**
* #brief SPI4 Initialization Function
* #param None
* #retval None
*/
static void MX_SPI4_Init(void)
{
/* USER CODE BEGIN SPI4_Init 0 */
/* USER CODE END SPI4_Init 0 */
/* USER CODE BEGIN SPI4_Init 1 */
/* USER CODE END SPI4_Init 1 */
/* SPI4 parameter configuration*/
hspi4.Instance = SPI4;
hspi4.Init.Mode = SPI_MODE_MASTER;
hspi4.Init.Direction = SPI_DIRECTION_2LINES;
hspi4.Init.DataSize = SPI_DATASIZE_8BIT;
hspi4.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi4.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi4.Init.NSS = SPI_NSS_SOFT;
hspi4.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
hspi4.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi4.Init.TIMode = SPI_TIMODE_DISABLE;
hspi4.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi4.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi4) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI4_Init 2 */
/* USER CODE END SPI4_Init 2 */
}
/**
* #brief SPI5 Initialization Function
* #param None
* #retval None
*/
static void MX_SPI5_Init(void)
{
/* USER CODE BEGIN SPI5_Init 0 */
/* USER CODE END SPI5_Init 0 */
/* USER CODE BEGIN SPI5_Init 1 */
/* USER CODE END SPI5_Init 1 */
/* SPI5 parameter configuration*/
hspi5.Instance = SPI5;
hspi5.Init.Mode = SPI_MODE_MASTER;
hspi5.Init.Direction = SPI_DIRECTION_2LINES;
hspi5.Init.DataSize = SPI_DATASIZE_8BIT;
hspi5.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi5.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi5.Init.NSS = SPI_NSS_SOFT;
hspi5.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
hspi5.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi5.Init.TIMode = SPI_TIMODE_DISABLE;
hspi5.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi5.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi5) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI5_Init 2 */
/* USER CODE END SPI5_Init 2 */
}
/**
* #brief TIM1 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* #brief USART1 Initialization Function
* #param None
* #retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream1_IRQn);
}
/* FMC initialization function */
static void MX_FMC_Init(void)
{
/* USER CODE BEGIN FMC_Init 0 */
/* USER CODE END FMC_Init 0 */
FMC_SDRAM_TimingTypeDef SdramTiming = {0};
/* USER CODE BEGIN FMC_Init 1 */
/* USER CODE END FMC_Init 1 */
/** Perform the SDRAM1 memory initialization sequence
*/
hsdram1.Instance = FMC_SDRAM_DEVICE;
/* hsdram1.Init */
hsdram1.Init.SDBank = FMC_SDRAM_BANK2;
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
hsdram1.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;
hsdram1.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
hsdram1.Init.ReadBurst = FMC_SDRAM_RBURST_DISABLE;
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_1;
/* SdramTiming */
SdramTiming.LoadToActiveDelay = 2;
SdramTiming.ExitSelfRefreshDelay = 7;
SdramTiming.SelfRefreshTime = 4;
SdramTiming.RowCycleDelay = 7;
SdramTiming.WriteRecoveryTime = 3;
SdramTiming.RPDelay = 2;
SdramTiming.RCDDelay = 2;
if (HAL_SDRAM_Init(&hsdram1, &SdramTiming) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FMC_Init 2 */
/* USER CODE END FMC_Init 2 */
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, NCS_MEMS_SPI_Pin|CSX_Pin|OTG_FS_PSO_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(ACP_RST_GPIO_Port, ACP_RST_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, RDX_Pin|WRX_DCX_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOG, LD3_Pin|LD4_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : PF6 */
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
/*Configure GPIO pin : ENABLE_Pin */
GPIO_InitStruct.Pin = ENABLE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(ENABLE_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : NCS_MEMS_SPI_Pin CSX_Pin OTG_FS_PSO_Pin */
GPIO_InitStruct.Pin = NCS_MEMS_SPI_Pin|CSX_Pin|OTG_FS_PSO_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : B1_Pin MEMS_INT1_Pin MEMS_INT2_Pin TP_INT1_Pin */
GPIO_InitStruct.Pin = B1_Pin|MEMS_INT1_Pin|MEMS_INT2_Pin|TP_INT1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : B5_Pin VSYNC_Pin G2_Pin R4_Pin
R5_Pin */
GPIO_InitStruct.Pin = B5_Pin|VSYNC_Pin|G2_Pin|R4_Pin
|R5_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : ACP_RST_Pin */
GPIO_InitStruct.Pin = ACP_RST_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(ACP_RST_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : OTG_FS_OC_Pin */
GPIO_InitStruct.Pin = OTG_FS_OC_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(OTG_FS_OC_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : R3_Pin R6_Pin */
GPIO_InitStruct.Pin = R3_Pin|R6_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF9_LTDC;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : BOOT1_Pin */
GPIO_InitStruct.Pin = BOOT1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(BOOT1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : G4_Pin G5_Pin B6_Pin B7_Pin */
GPIO_InitStruct.Pin = G4_Pin|G5_Pin|B6_Pin|B7_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : OTG_HS_ID_Pin OTG_HS_DM_Pin OTG_HS_DP_Pin */
GPIO_InitStruct.Pin = OTG_HS_ID_Pin|OTG_HS_DM_Pin|OTG_HS_DP_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF12_OTG_HS_FS;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : VBUS_HS_Pin */
GPIO_InitStruct.Pin = VBUS_HS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(VBUS_HS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : TE_Pin */
GPIO_InitStruct.Pin = TE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(TE_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : RDX_Pin WRX_DCX_Pin */
GPIO_InitStruct.Pin = RDX_Pin|WRX_DCX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : R7_Pin DOTCLK_Pin B3_Pin */
GPIO_InitStruct.Pin = R7_Pin|DOTCLK_Pin|B3_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/*Configure GPIO pins : HSYNC_Pin G6_Pin R2_Pin */
GPIO_InitStruct.Pin = HSYNC_Pin|G6_Pin|R2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : G7_Pin B2_Pin */
GPIO_InitStruct.Pin = G7_Pin|B2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : G3_Pin B4_Pin */
GPIO_InitStruct.Pin = G3_Pin|B4_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF9_LTDC;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/*Configure GPIO pins : LD3_Pin LD4_Pin */
GPIO_InitStruct.Pin = LD3_Pin|LD4_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* #brief This function is executed in case of error occurrence.
* #retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* #brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* #param file: pointer to the source file name
* #param line: assert_param error line source number
* #retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
I get absolutely nothing on pin PE6 (SPI4_MOSI), and have been watching using a Digilent Analog Discovery 2:
One issue I believe I have found, is that DMA was not being initialized using the parameters I provided in STM32CubeMX screen of the IDE, so I included them manually. This, however, did not solve the issue, and is still the same.
I also found a website essentially doing what I am attempting to do using the same MCU I am, but cannot see where I'm going wrong:
https://microtechnics.ru/en/stm32cube-spi-and-dma-example/
Thank you in advance for any help with this!!
I cannot comment due to low reputation, but aren't you sending one single signal out? That might only make them flash for a split-second. These LEDs by themselves do not have 'On/Off' switches. Shouldn't you put HAL_SPI_Transmit_DMA inside while (1) to send it continuously?
HAL_DMA_Start(&hdma_spi4_tx, (uint32_t)LEDData_WS2812B, (uint32_t)&hspi4.Instance->DR, sizeof(LEDData_WS2812B)/sizeof(uint8_t));
while (1)
{
/* USER CODE END WHILE */
HAL_SPI_Transmit_DMA(&hspi4, (uint8_t *)LEDData_WS2812B, sizeof(LEDData_WS2812B)/sizeof(uint8_t));
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
And think about what kind of signal you are sending to your LEDs. An array of LEDs has to be driven by a continuous Pulse-Width Modulated signal. Signal shape depends on LED characteristics like number of LEDs, power, RGB etc.
I have a stripe of LEDs close to yours (WS2813), though I have driven it with Arduino, not STM32. I required a special library to drive my LEDs called FastLED, which did PWM for me. Maybe you can take a look at it and port parts you need to C:
http://fastled.io/;
https://github.com/FastLED/FastLED
Or do it yourself. Doing PWM manually is not too hard, it's just arithmetic. STM324xx provides all tools necessary. Enable your TIM timers with CubeMX and set to PWM generation.
Then create the signal by manipulating Configuration Settings (Pulse, Counter Settings, Prescaler, Counter Period) and clock configuration following data sheet for LEDs. They describe driving signal there:
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
Lastly, here's some ancient code written in ArduinoIDE. This doesn't have much to do with your question but have it anyway. It's supposed to make a flowing rainbow I think :-)
#include <FastLED.h>
#define LED_PIN 7 /*What pin to use*/
#define NUM_LEDS 30 /*how many leds in array*/
#define STD_DELAY 50 /*delay until next step in ms*/
#define MIN_VAL 16 /*lowest value RGB can take 0-255*/
#define MAX_VAL 128 /*highest value RGB can take 0-255*/
#define STEP 8 /*how quickly to change colour (must follow eq. STEP = 2^n (where n is a natural number)*/
CRGB leds[NUM_LEDS];
void setup() { /*set up leds*/
FastLED.addLeds<WS2813, LED_PIN, GRB>(leds, NUM_LEDS);
}
void loop() {
unsigned char i = 0;
unsigned char j = 0;
unsigned char buf;
unsigned char R=MAX_VAL;
unsigned char G=MIN_VAL;
unsigned char B=MIN_VAL;
leds[NUM_LEDS-1] = CRGB(MIN_VAL,MIN_VAL,MIN_VAL);
while (1){
if (R == MAX_VAL && G < MAX_VAL && B == MIN_VAL){
G += STEP;
}
else if (R > MIN_VAL && G == MAX_VAL && B == MIN_VAL){
R -= STEP;
}
else if (R == MIN_VAL && G == MAX_VAL && B < MAX_VAL){
B += STEP;
}
else if (R == MIN_VAL && G > MIN_VAL && B == MAX_VAL){
G -= STEP;
}
else if (R < MAX_VAL && G == MIN_VAL && B == MAX_VAL){
R += STEP;
}
else if (R == MAX_VAL && G == MIN_VAL && B > MIN_VAL){
B -= STEP;
}
leds[0] = CRGB(R,G,B);
for (j = NUM_LEDS-1; j > 0; j--){
leds[j] = leds[j-1];
}
FastLED.show(); /*send signal to LEDs*/
delay(STD_DELAY);
}
}