Flynn's Bottleneck - maximum speedup 2 - cpu-architecture

According to Flynn's Bottleneck, the speedup due to instruction level parallelism (ILP) can be at best 2. Why is it so?

That version of Flynn's Bottleneck originates in Detection and Parallel Execution of Independent Instructions where the authors empirically conclude that ILP for most programs is less than 2. That was 1970 technology and that was an empirical conclusion. You can contrast it with Fisher's Optimism which said there was lots of ILP out there and proposed trace scheduling and VLIW to exploit it.
So the literal answer to your question is because that's what they measured within basic blocks back then.
The ILP less than 2 meaning isn't really used anymore because superscalars and better compilers have blown past the number 2. So instead, over time Flynn's Bottleneck has come to mean You cannot retire more than you fetch which stems from his earlier paper Some Computer Organizations and Their Effectiveness.
The execution bandwidth of a system is usually referred to as being
the maximum number of operations that can be performed per unit time
by the execution area. Notice that due to bottlenecks in issuing
instructions, for example, the execution bandwidth is usually
substantially in excess of the maximum performance of a system.

Related

Out of Order Execution, How to Solve True Dependency?

I was reading about OOOE (Out of Order Execution) and read about how we can solve false dependencies (By using renaming).
But my question is, how can we solve true dependency (RAW - read after write)?
For example:
R1=R2+R3 #1
R1=R4+R5 #2
R9=R1 #3
Renaming won't be helpful here in case CPU chose to run #2 before #1.
There is no way to really avoid them, that's why RAW hazards are called true dependencies. Instructions have to wait for their inputs to be ready before they can execute. (With OoO exec, normally CPUs will dispatch the oldest-ready-first instructions / uops to execution units, for example on Intel CPUs.)
True dependencies aren't something you "solve" in the sense of making them go away, they're the essence of computation, the way multiple computations on the same numbers are glued together to form an algorithm. Other hazards (WAR and WAW) are just implementation details, reusing the same architectural register for something different.
Sometimes you can structure an algorithm to have shorter dependency chains, once things are already nailed down into machine code, the CPU pretty much just has to respect them, with at best out-of-order exec to overlap independent dep chains.
For loads, in theory there's value-prediction, but AFAIK no real CPU is doing that. Mispredictions are expensive, just like for branches. That's why you'd only want to consider that for high-latency stuff like loads that miss in cache, otherwise the gains won't outweigh the costs. (Even then, it's not done because the gains don't outweigh the costs even for loads, including the power / area cost of building a predictor.) As Paul Clayton points out, branch prediction is a form of value prediction (predicting the condition the load was based on). The more instructions you can keep in flight at once with OoO exec, the more you stand to lose from mispredicts, but real CPUs do predict / speculate for memory disambiguation (whether a load reloads an earlier store to an unknown address or not), and (on CPUs like x86 with strongly-ordered memory models) speculating that early loads will turn out to be allowed; as well as the well known case of control dependencies (branch prediction + speculative execution).
The only thing that helps directly with dependency chains is keeping instruction latencies low. e.g. in the case of your example, #3 is just a register copy, which modern x86 CPUs can do with zero latency (mov-elimination), so another instruction dependent on R9 wouldn't have to wait an extra cycle beyond #2 producing a result, because it's handled during register renaming instead of by an execution unit reading an input and producing an output the normal way.
Obviously bypass forwarding from the outputs of execution units to the inputs of the same or others is essential to keep latency low, same as in an in-order classic RISC pipeline.
Or more conventionally, by improving execution units, like AMD Bulldozer family had 2-cycle latency for most SIMD integer instructions, but that improved to 1 cycle for AMD's next design, Zen. (Scalar integer stuff like add was always 1 cycle on any sane high-performance CPU.)
OoO exec with a large enough window size lets you overlap multiple dep chains in parallel (as in this experiment, and of course software should aim to have enough instruction-level parallelism (ILP) for the CPU to find and exploit. (See Why does mulss take only 3 cycles on Haswell, different from Agner's instruction tables? (Unrolling FP loops with multiple accumulators) for an example of doing that by summing into multiple accumulators for a dot-product.)
This is also useful for in-order CPUs if done statically by a compiler, where techniques like "software pipelining" are a big deal to overlap execution of multiple loop iterations because HW isn't finding that parallelism for you. Or for OoO exec CPUs with a limited window size, for loops with long but not loop-carried dependency chains within each iteration.
As long as you're bottlenecked on something other than latency / dependency chains, true dependencies aren't the problem. e.g. a front-end bottleneck, ideally maxed out at the pipeline width, and/or all relevant back-end execution units busy every cycle, mean that you couldn't get more work through the pipeline even if it was independent.
Of course, in a lot of code there are enough dependencies, including through memory, to not reach that ideal situation.
Simultaneous Multithreading (SMT) can help to keep the back-end fed with work to do, increasing throughput by having the front-end of one physical core read multiple instruction streams, acting as multiple logical cores. This effectively creates ILP out of thread-level parallelism, which is useful if software can scale efficiently to more threads, exposing enough TLP to keep all the logical cores busy.
Related:
Modern Microprocessors A 90-Minute Guide!
How many CPU cycles are needed for each assembly instruction? - that's not how it works on superscalar OoO exec CPUs; latency or throughput or a front-end bottleneck might be the relevant thing.
What considerations go into predicting latency for operations on modern superscalar processors and how can I calculate them by hand?

MATLAB program simulation with the given processor requirements

I have a system with configuration intel(R) core(TM) i3-5020U CPU # 2.2 GHz,4GB RAM. But in order to compare the performance of my MATLAB program in terms of execution time, I need to execute it on a machine with configuration Intel(R) Core(TM) i5-3570 CPU # 3.40GHz, 16 GB RAM. Is there a way to perform this kind of simulation?
TL:DR: No. Performance differences between Broadwell and IvyBridge depend on lots of complicated details. (See Agner Fog's microarch pdf for the low-level microarchitectural details, and also other stuff in the x86 tag wiki)
It's likely that performance will scale with either clock speed or memory speed within maybe 10%, even between different microarchitectures, but it might not.
Using your own system, you can probably figure out how your code scales with CPU frequency, by forcing it to stay at minimum frequency for a test run. If it's a lot less than perfect scaling, then memory speed is a big factor. (The slower your CPU, the fewer cycles are spent waiting for memory.)
You can't extrapolate IvB i5 3.4GHz performance from BDW 2.2GHz performance without knowing a lot more details about exactly what your code bottlenecks on. It's possible that it bottlenecks on the same simple thing on both CPUs, in which case you could extrapolate. e.g. if it turns out that it bottlenecks on FP multiply latency, then run-time on IvB would be 5/3rds the run time on Broadwell (times the clock frequency ratio), since BDW has 3 cycle FP multiply and add, but SnB/IvB/Haswell have 5 cycle multiply. (FMA is 5 cycles on BDW, if I recall correctly. IvB doesn't support FMA, so if Matlab takes advantage of that on BDW, it's not even running the same machine code).
More likely, it's not that simple and cache / memory performance comes into it, too. Haswell/Broadwell don't have L1 cache-bank conflicts, but SnB/IvB do.
Depending on how you run the workload on the i5 CPU, it might or might not be able to turbo up to higher than its rated 3.4GHz, further confounding any attempt to guess at performance.
It's hard to tell with different computers to measure practical efficiency. That's why you usually use theoretical efficiency with Big-O, check the wiki page for algorithm efficiency and Big-O notation.
In the case you have access to both codes (yours, and the other guy's code), you can test them in the same computer with the methods for measuring performance proposed by mathworks, which are mainly time functions in real time and cpu time.
Lastly, you can see here several challenges about benchmarking that might be interesting to consider.

Ghz to MIPS? Rough estimate anyone?

From the research I have done so far I learned that there the MIPS is highly dependent upon the application being run, or the language.
But can anyone give me their best guess for a 2.5 Ghz computer in MIPS? Or any other number of Ghz?
C++ if that helps.
MIPS stands for "Million Instructions Per Second", but that value becomes difficult to calculate for modern computers. Many processor architectures (such as x86 and x86_64, which make up most desktop and laptop computers) fall into the CISC category of processors. CISC architectures often contain instructions that perform several different tasks at once. One of the consequences of this is that some instructions take more clock cycles than other instructions. So even if you know your clock frequency (in this case 2.5 gigahertz), the number of instructions run per second depends mostly on which instructions a program uses. For this reason, MIPS has largely fallen out of use as a performance metric.
For some of my many benchmarks, identified in
http://www.roylongbottom.org.uk/
I produce an assembly code listing from which actual assembler instructions used can be calculated (Note that these are not actual micro instructions used by the RISC processors). The following includes %MIPS/MHz calculations based on these and other MIPS assumptions.
http://www.roylongbottom.org.uk/cpuspeed.htm
The results only apply for Intel CPUs. You will see that MIPS results depend on whether CPU, cache or RAM data is being used. For a modern CPU at 2500 MHz, likely MIPS are between 1250 and 9000 using CPU/L1 cache but much less accessing data in RAM. Then there are SSE SIMD integer instructions. Real integer MIPS for simple register based additions are in:
http://www.roylongbottom.org.uk/whatcpu%20results.htm#anchorC2D
Where my 2.4 GHz Core 2 CPU is shown to run at up to 17531 MIPS.
Roy
MIPS officially stands for Million Instructions Per Second but the Hacker's Dictionary defines it as Meaningless Indication of Processor Speed. This is because many companies use the theoretical maximum for marketing which is never achieved in real applications. E.g. current Intel processors can execute up to 4 instructions per cycle. Following this logic at 2.5 GHz it achieves 10,000 MIPS. In real applications, of course, this number is never achieved. Another problem, which slavik already mentions, is that instructions do different amounts of useful work. There are even NOPs, which–by definition–do nothing useful yet contribute to the MIPS rating.
To correct this people began using Dhrystone MIPS in the 1980s. Dhrystone is a synthetical benchmark (i.e. it is not based on a useful program) and one Dhrystone MIPS is defined relative to the benchmark performance of a VAX 11/780. This is only slightly less ridiculous than the definition above.
Today, performance is commonly measured by SPEC CPU benchmarks, which are based on real world programs. If you know these benchmarks and your own applications very well, you can make resonable predictions of performance without actually running your application on the CPU in question.
They key is to understand that performance will vary widely based on a number of characteristics. E.g. there used to be a program called The Many Faces of Go which essentially hard codes knowledge about the Board Game in many conditional if-clauses. The performance of this program is almost entirely determined by the branch predictor. Other programs use hughe amounts of memory that does not fit into any cache. The performance of these programs is determined by the bandwidth and/or latency of the main memory. Some applications may depend heavily on the throughput of floating point instructions while other applications never use any floating point instructions. You get the idea. An accurate prediction is impossible without knowing the application.
Having said all that, an average number would be around 2 instructions per cycle and 5,000 MIPS # 2.5 GHz. However, real numbers can be easily ten or even a hundred times lower.

Is there any difference in execution times between two different processors with same amount of gigaflops?

I have a hardware related question that I debated with a friend.
Consider two processors from two different manufacturers with the same amount of gigaflops put into the same computers (i.e. RAM and such as are the same for both computers).
Now given a simple program will there be any difference in execution times between the two computers with the same processors. I.e. will the two computers handle the code differently (for-loops, while-loops, if-statements and such)?
And if, is that difference noticably or can one say that the computers would approximately perform the same?
Short answer: Yes, they will be different, possibly very much so.
Flops are just about floating point operations, so it is a very very crude measure of CPU performance. It is, in general, a decent proxy for performance for scientific computations of certain kinds, but not for general performance.
There are CPUs which are strong in FLOPS - the Alpha is a historical example - but which have more moderate performance in integer computations. This means that an alpha and an x86 CPU with similar FLOPS would have very different MIPS-performance.
The truth is that it is very hard to make a good generic benchmark, though many have tried.
Another critical factor in comparing the performance of two processors with the same FLOP measure is the rate at which they can move data between CPU and RAM. Add memory cache into your thinking to complicate matters further.

How to find the time value of operation to optimize new algorithm design?

My question is specific to iPhone, iPod, and iPad, since I am assuming that the architecture makes a big difference. I'm hoping there is either a specification somewhere (for the various chips perhaps), or a reliable way to measure T for each specific instruction. I know I can use any number of tools to measure aggregate processor time used, memory used, etc. I want to quantify at a lower level.
So, I'm able to figure out how many times I go through the main part of the algorithm. For example, I iterate n * (n-1) times in a naive implementation, and between n (best case) and n + n * (n-1) (worst case) in another. I can also make a reasonable count of the total number of instructions (+ - = % * /, and logic statements), and I can compare those counts, but that's assuming the weight of each operation is the same. Also, I don't have any idea how to weight the actual time value of a logic statement (if, else, for, while) vs a mathematical operator... is "if" as much work as "+" each time I use it? I would love to know where to find this information.
So, for clarity, my goal is to discover how much processor time I am demanding of the CPU (or GPU or any U) so that I can design an optimal algorithm around processor time. Can someone give me an idea of where to start for iOS hardware?
Edit: This link to ClockServices.c and SIMD stuff in the developer portal might be a good start for people interested in this. A few more cups of coffee tonight and I might get through it ;)
On a modern platform, processor time isn't the only limiting factor. Often, memory access is.
Still, processor time:
Your basic approach at an estimation for the processor load is OK, though, and is sensible: Make a rough estimate of the cost based on your knowledge of typical platforms.
In this article, Table 1 shows the times for typical primitive operations in .NET. While your platform may vary, the relative time is usually very similar. Maybe you can find - or even make - one for iStuff.
(I haven't come across one so thorough for other platforms, except processor / instruction set manuals, but they deal with assembly instructions)
memory locality:
A cache miss can cost you hundreds of cycles, a disk access a thousand times as much. So controlling your memory access patterns (i.e. reducing the working set, restructuring and accessing data in a cache-friendly way) is an important part of evaluating an algorithm.
xCode has instruments to measure performance of each function/operation, you can simply use them.