I have an expression with three variables x,y and v. I want to first integrate over v, and so I use int function in MATLAB.
The command that I use is the following:
g =int((1-fxyz)*pv, v, y,+inf)%
PS I haven't given you what the function fxyv is but it is very complicated and so int is taking so long and I am afraid after waiting it might not solve it.
I know one option for me is to integrate numerically using for example integrate, however I want to note that the second part of this problem requires me to integrate exp[g(x,y)] over x and y from 0 to infinity and from x to infinity respectively. So I can't take numerical values of x and y when I want to integrate over v I think or maybe not ?
Thanks
Since the question does not contain sufficient detail to attempt analytic integration, this answer focuses on numeric integration.
It is possible to solve these equations numerically. However, because of complex dependencies between the three integrals, it is not possible to simply use integral3. Instead, one has to define functions that compute parts of the expressions using a simple integral, and are themselves fed into other calls of integral. Whether this approach leads to useful results in terms of computation time and precision cannot be answered generally, but depends on the concrete choice of the functions f and p. Fiddling around with precision parameters to the different calls of integral may be necessary.
I assume that the functions f(x, y, v) and p(v) are defined in the form of Matlab functions:
function val = f(x, y, v)
val = ...
end
function val = p(v)
val = ...
end
Because of the way they are used later, they have to accept multiple values for v in parallel (as an array) and return as many function values (again as an array, of the same size). x and y can be assumed to always be scalars. A simple example implementation would be val = ones(size(v)) in both cases.
First, let's define a Matlab function g that implements the first equation:
function val = g(x, y)
val = integral(#gIntegrand, y, inf);
function val = gIntegrand(v)
% output must be of the same dimensions as parameter v
val = (1 - f(x, y, v)) .* p(v);
end
end
The nested function gIntegrand defines the object of integration, the outer performs the numeric integration that gives the value of g(x, y). Integration is over v, parameters x and y are shared between the outer and the nested function. gIntegrand is written in such a way that it deals with multiple values of v in the form of arrays, provided f and p do so already.
Next, we define the integrand of the outer integral in the second equation. To do so, we need to compute the inner integral, and therefore also have a function for the integrand of the inner integral:
function val = TIntegrandOuter(x)
val = nan(size(x));
for i = 1 : numel(x)
val(i) = integral(#TIntegrandInner, x(i), inf);
end
function val = TIntegrandInner(y)
val = nan(size(y));
for j = 1 : numel(y)
val(j) = exp(g(x(i), y(j)));
end
end
end
Because both function are meant to be fed as an argument into integral, they need to be able to deal with multiple values. In this case, this is implemented via an explicit for loop. TIntegrandInner computes exp(g(x, y)) for multiple values of y, but the fixed value of x that is current in the loop in TIntegrandOuter. This value x(i) play both the role of a parameter into g(x, y) and of an integration limit. Variables x and i are shared between the outer and the nested function.
Almost there! We have the integrand, only the outermost integration needs to be performed:
T = integral(#TIntegrandOuter, 0, inf);
This is a very convoluted implementation, which is not very elegant, and probably not very efficient. Again, whether results of this approach prove to be useful needs to be tested in practice. However, I don't see any other way to implement these numeric integrations in Matlab in a better way in general. For specific choices of f(x, y, v) and p(v), there might be possible improvements.
Related
The equation is 4*x^2-2*y^2==9. Using implicit differentiation, I can find that the second derivative of y with respect to x is -9/y^3, which requires a substitution in the final step.
I am trying to duplicate this answer using Matlab's symbolic toolbox. I did find some support for the first derivative here, and was successful finding the first derivative.
clear all
syms x y f
f=4*x^2-2*y^2-9
sol1=-diff(f,x)/diff(f,y)
But I am unable to continue onward to find the second derivative with the final simplification (replacing 4*x^2-2*y^2 with 9).
Can someone show me how to do this in Matlab?
To my knowledge there is no direct way to obtain an implicit second derivative in Matlab. And working with implicit functions in Matlab can be fairly tricky. As a start, your variable y is implicitly a function of x s you should define it as such:
clear all
syms y(x) % defines both x and y
f = 4*x^2-2*y^2-9
Here y(x) is now what is called an arbitrary or abstract symbolic function, i.e., one with no explicit formula. Then take the derivative of f with respect to x:
s1 = diff(f,x)
This returns a function in terms of the implicit derivative of y(x) with respect to x, diff(y(x), x) (in this case diff(y) is shorthand). You can solve this function for diff(y) algebraically with subs and solve:
syms dydx % arbitrary variable
s2 = subs(s1,diff(y),dydx)
s3 = solve(s2,dydx)
This yields the first implicit derivative. You can then take another derivative of this expression to obtain the second implicit derivative as a function of the first:
s4 = diff(s3,x)
Finally, substitute the expression for the first implicit derivative into this and simplify to obtain the final form:
s5 = simplify(subs(s4,diff(y),s3))
This yields (2*(y(x)^2 - 2*x^2))/y(x)^3. And then you can eliminate x using the original expression for f with further substitution and solving:
syms x2
f2 = subs(f,x^2,x2)
x2 = solve(f2,x2)
s6 = subs(s5,x^2,x2)
Finally, you can turn this back into an explicit algebraic expression with a final substitution, if desired:
s7 = subs(s6,y,'y')
This yields your solution of -9/y^3.
This whole process can be written more concisely (but very unclearly) as:
clear all
syms y(x) dydx x2
f = 4*x^2-2*y^2-9;
s1 = solve(subs(diff(f,x),diff(y),dydx),dydx)
s2 = simplify(subs(subs(subs(diff(s1,x),diff(y),s1),x^2,solve(subs(f,x^2,x2),x2)),y,'y'))
There are many other ways to achieve the same result. See also these two tutorials: [1], [2].
It's been almost four years since I asked this question, and got brilliant help from horchler, but I've discovered another method using the chain rule.
syms x y
f=4*x^2-2*y^2-9
dydx=-diff(f,x)/diff(f,y)
d2ydx2=diff(dydx,x)+diff(dydx,y)*dydx
d2ydx2=simplifyFraction(d2ydx2,'Expand',true)
s1=solve(f,x)
subs(d2ydx2,x,s1(2))
I have the following code in MATLAB:
% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(#(t)(costFunction(t, X, y)), initial_theta, options);
My instructor has explained the minimising function like so:
To specify the actual function we are minimizing, we use a "short-hand"
for specifying functions, like #(t)(costFunction(t, X, y)). This
creates a function, with argument t, which calls your costFunction. This
allows us to wrap the costFunction for use with fminunc.
I really cannot understand what #(t)(costFunction(t, X, y) means. What are the both ts are doing? What kind of expression is that?
In Matlab, this is called an anonymous function.
Take the following line:
f = #(t)( 10*t );
Here, we are defining a function f, which takes one argument t, and returns 10*t. It can be used by
f(5) % returns 50
In your case, you are using fminunc which takes a function as its first argument, with one parameter to minimise over. This could be called using
X = 1; y = 1; % Defining variables which aren't passed into the costFunction
% but which must exist for the next line to pass them as anything!
f = #(t)(costFunction(t, X, y)); % Explicitly define costFunction as a function of t alone
[theta, cost] = fminunc(f, 0, options);
This can be shortened by not defining f first, and just calling
[theta, cost] = fminunc(#(t)(costFunction(t, X, y)), 0, options);
Further reading
As mentioned in the comments, here is a link to generally parameterising functions.
Specifically, here is a documentation link about anonymous functions.
Just adding to Wolfie's response. I was confused as well and asked a similar question here:
Understanding fminunc arguments and anonymous functions, function handlers
The approach here is one of 3. The problem the anonymous function (1 of the 3 approaches in the link below) solves is that the solver, fminunc only optimizes one argument in the function passed to it. The anonymous function #(t)(costFunction(t, X, y) is a new function that takes in only one argument, t, and later passes this value to costFunction. You will notice that in the video lecture what was entered was just #costFunction and this worked because costFunction only took one argument, theta.
https://www.mathworks.com/help/optim/ug/passing-extra-parameters.html
I also had the same question. All thanks to the the link provided by Wolfie to understand paramterized and anonymous functions, I was able to clarify my doubts. Perhaps, you must have already found your answer but am explaining once again, for people who might develop this query in the mere future.
Let's say we want to derive a polynomial, and find its minimum/maximum value. Our code is:
m = 5;
fun = #(x) x^2 + m; % function that takes one input: x, accepts 'm' as constant
x = derive(fun, 0); % fun passed as an argument
As per the above code, 'fun' is a handle that points to our anonymous function, f(x)=x^2 + m. It accepts only one input, i.e. x. The advantage of an anonymous function is, one doesn't need to create a separate program for it. For the constant, 'm', it can accept any values residing in the current workspace.
The above code can be shortened by:
m = 5;
x = derive(#(x) x^2 + m, 0); % passed the anonymous function directly as argument
Our target is to find the global optimal,so i think the function here is to get a bounch of local minimal by change the alpha and compare with each other to see which one is the best.
to achive this you initiate the fminuc with value initial_theta
fminuc set t=initial_theta then compute CostFunction(t,X,y) which is equal to` CostFunction(initial_theta,X,y).you will get the Cost and also the gradient.
fminuc will compute a new_theta with the gradient and a alpha, then set t=new_theta and compute the Cost and gradient again.
it will loop like this until it find the local optimal.
Then it change the length of alpha and repeat above to get another optimal. At the end it will compare the optimals and return with the best one.
I have data like this:
y = [0.001
0.0042222222
0.0074444444
0.0106666667
0.0138888889
0.0171111111
0.0203333333
0.0235555556
0.0267777778
0.03]
and
x = [3.52E-06
9.72E-05
0.0002822918
0.0004929136
0.0006759156
0.0008199029
0.0009092797
0.0009458332
0.0009749509
0.0009892005]
and I want y to be a function of x with y = a(0.01 − b*n^−cx).
What is the best and easiest computational approach to find the best combination of the coefficients a, b and c that fit to the data?
Can I use Octave?
Your function
y = a(0.01 − b*n−cx)
is in quite a specific form with 4 unknowns. In order to estimate your parameters from your list of observations I would recommend that you simplify it
y = β1 + β2β3x
This becomes our objective function and we can use ordinary least squares to solve for a good set of betas.
In default Matlab you could use fminsearch to find these β parameters (lets call it our parameter vector, β), and then you can use simple algebra to get back to your a, b, c and n (assuming you know either b or n upfront). In Octave I'm sure you can find an equivalent function, I would start by looking in here: http://octave.sourceforge.net/optim/index.html.
We're going to call fminsearch, but we need to somehow pass in your observations (i.e. x and y) and we will do that using anonymous functions, so like example 2 from the docs:
beta = fminsearch(#(x,y) objfun(x,y,beta), beta0) %// beta0 are your initial guesses for beta, e.g. [0,0,0] or [1,1,1]. You need to pick these to be somewhat close to the correct values.
And we define our objective function like this:
function sse = objfun(x, y, beta)
f = beta(1) + beta(2).^(beta(3).*x);
err = sum((y-f).^2); %// this is the sum of square errors, often called SSE and it is what we are trying to minimise!
end
So putting it all together:
y= [0.001; 0.0042222222; 0.0074444444; 0.0106666667; 0.0138888889; 0.0171111111; 0.0203333333; 0.0235555556; 0.0267777778; 0.03];
x= [3.52E-06; 9.72E-05; 0.0002822918; 0.0004929136; 0.0006759156; 0.0008199029; 0.0009092797; 0.0009458332; 0.0009749509; 0.0009892005];
beta0 = [0,0,0];
beta = fminsearch(#(x,y) objfun(x,y,beta), beta0)
Now it's your job to solve for a, b and c in terms of beta(1), beta(2) and beta(3) which you can do on paper.
The following is a MATLAB problem.
Suppose I define an function f(x,y).
I want to calculate the partial derivative of f with respect to y, evaluated at a specific value of y, e.g., y=6. Finally, I want to integrate this new function (which is only a function of x) over a range of x.
As an example, this is what I have tried
syms x y;
f = #(x, y) x.*y.^2;
Df = subs(diff(f,y),y,2);
Int = integral(Df , 0 , 1),
but I get the following error.
Error using integral (line 82)
First input argument must be a function
handle.
Can anyone help me in writing this code?
To solve the problem, matlabFunction was required. The solution looks like this:
syms x y
f = #(x, y) x.*y.^2;
Df = matlabFunction(subs(diff(f,y),y,2));
Int = integral(Df , 0 , 1);
Keeping it all symbolic, using sym/int:
syms x y;
f = #(x, y) x.*y.^2;
Df = diff(f,y);
s = int(Df,x,0,1)
which returns y. You can substitute 2 in for y here or earlier as you did in your question. Not that this will give you an exact answer in this case with no floating-point error, as opposed to integral which calculated the integral numerically.
When Googling for functions in Matlab, make sure to pay attention what toolbox they are in and what classes (datatypes) they support for their arguments. In some cases there are overloaded versions with the same name, but in others, you may need to look around for a different method (or devise your own).
I am writing a program in Matlab and I have a function defined this way.
sum (i=1...100) (a*x(i) + b*y(i) + c)
x and y are known, while a, b and c are not: I need to find values for them such that the total value of the function is minimized. There is no additional constraint for the problem.
I thought of using fminsearch to solve this minimization problem, but from Mathworks I get that functions which are suitable inputs for fminsearch are defined like this (an example):
square = #(x) x.^2
So in my case I could use a vector p=[a, b, c] as the value to minimize, but then I don't know how to define the remaining part of the function. As you can see the number of possible values for the index i is huge, so I cannot simply sum everything together explicitly, but I need to represent the summation in some way. If I write the function somewhere else then I am forced to use symbolic calculus for a, b and c (declaring them with syms) and I'm not sure fminsearch would accept that.
What can I do? Of course if fminsearch turns out to be unfeasible for my situation I accept links to use something else.
The most general solution is to use x and y in the definition of the objective function:
>> objfun = #(p) sum( p(1).*x + p(2).*y + p(3) );
>> optp = fminsearch( objfun, po, ... );