What does it mean when object extends class with no implementation - scala

object PostgresDriver extends PostgresDriver
I see this in slick with no implementation whatsoever. I am wonder does that just automatically create a singleton class?

This is pretty standard practice, defining a trait to represent the abstraction and then providing a standard implementation of that trait as an object. If you just do it as the object you don't have an abstraction to refer to it as and stuff like that can make mocking and testing difficult at the least

Related

What are the advantages or disadvantages of declaring function/method in companion objects versus declaring them in traits?

I am new to Scala and I now started a project in Scala and I see similar to the following construct:
trait SomeTrait extends SomeOtherStuff with SomeOtherStuff2
object SomeTrait {
def someFunction():Unit = { ??? }
}
I understand that for a class, companion objects hold methods that are used in a "static", like Factory methods in Java or something alike, but what about traits, why not put these methods in traits?
The first style is called mixin, it used to be somewhat popular back in the days.
It could be replaced by the following code:
object SomeOtherStuff {
def someMethod(): String
}
object SomeObj {
import SomeOtherStuff._
//now someMethod is available
def otherMethod(): String = someMethod + "!"
}
object Caller {
import SomeObj._
import SomeOtherStuff._
//utility methods from both objects are available here
}
Pros of mixins:
If SomeTrait extends 10 other mixins then extending this trait would allow to scrap 10 import statements
Cons of mixins:
1) creates unnecessary coupling between traits
2) awkward to use if the caller doesn't extend the mixin itself
Avoiding mixins for business-logic code is a safe choice.
Although I'm aware of 2 legitimate usecases:
1) importing DSLs
e.g. ScalaTest code :
class SomeSuite extends FunSuite with BeforeAndAfter {...}
2) working (as a library author) with implicit parameters:
e.g. object Clock extends LowPriorityImplicits
(https://github.com/typelevel/cats-effect/blob/master/core/shared/src/main/scala/cats/effect/Clock.scala#L127)
Another perspective to this is the OOP principle Composition Over Inheritance.
Pros of companion objects (composition):
composition can be done at runtime while traits are defined at compile time
you can easily have multiple of them. You don't have to deal with the quirks of multiple inheritance: say you have two traits that both have a method with the name foo - which one is going to be used or does it work at all? For me, it's easier to see the delegation of a method call, multiple inheritance tends to become complex very fast because you lose track where a method was actually defined
Pros of traits (mixins):
mixins seem more idiomatic to reuse, a class using a companion object of another class is odd. You can create standalone objects though.
it's cool for frameworks because it adds the frameworks functionality to your class without much effort. Something like that just isn't possible with companion objects.
In doubt, I prefer companion objects, but it always depends on your environment.

Scala macro to generate a class from a trait

I'm looking for a way to generate a class from a trait with all the methods implemented (throwing NotImplementedErrors). Having such class in place, I would be able to sub-class it to provide implementations for the methods I do need.
I consider this approach as a replacement for a mocking framework.
How to do that in scala-meta or scala-reflect?

When should I use a regular class in Scala?

It seems to me that I can make just about anything using object, trait, abstract class and in rare occasions, case class. Most of this is in the form object extends trait. So, I'm wondering, when should I, if ever, use a plain, standard class?
This is not a right place to ask this question
Looks like you are new Scala
Class is a specification for something(some entity) you want to model . It contains behavior and state
There is only one way to declare so called regular class using keyword class
Both trait and abstract class are used for inheritance.
trait is used for inheritance (generally to put common behavior in there). trait is akin to interface in Java. multiple inheritance possible with traits but not abstract class.
A class can extends one class or abstract class but can mixin any number of traits. Traits can have behavior and state.
case class is a nothing but a class but compiler produces some boilerplate code for us to make things easy and look good.
object is used when you want to declare some class but you want to have single instance of the class in the JVM (remember singleton pattern).
If an object performs stateful computations on its members i.e. its members are declared with vars;
Or, even if its member are only declared with vals but those vals store mutable data structures which can be edited in place, then it should be an ordinary (mutable) class akin to a Java mutable object.
The idiomatic way of using Case classes in Scala is as immutable types i.e. all the constructor arguments are vals. We could use vars but then we lose the advantages of case classes like equality comparisons will break over time.
Some advise from Programming in Scala by Odersky et al on deciding between using traits, abstract classes and concrete classes:
If the behavior will not be reused, then make it a concrete class. It is not reusable behavior after all.
If it might be reused in multiple, unrelated classes, make it a trait.
Only traits can be mixed into different parts of the class hierarchy.
If you want to inherit from it in Java code, use an abstract class.
Since traits with code do not have a close Java analog, it tends to be
awkward to inherit from a trait in a Java class. Inheriting from a
Scala class, meanwhile, is exactly like inheriting from a Java class.
As one exception, a Scala trait with only abstract members translates
directly to a Java interface, so you should feel free to define such
traits even if you expect Java code to inherit from it. See Chapter 29
for more information on working with Java and Scala together.
If you plan to distribute it in compiled form, and you expect outside
groups to write classes inheriting from it, you might lean towards
using an abstract class. The issue is that when a trait gains or loses
a member, any classes that inherit from it must be recompiled, even if
they have not changed. If outside clients will only call into the
behavior, instead of inheriting from it, then using a trait is fine.
If efficiency is very important, lean towards using a class. Most Java
runtimes make a virtual method invocation of a class member a faster
operation than an interface method invocation. Traits get compiled to
interfaces and therefore may pay a slight performance overhead.
However, you should make this choice only if you know that the trait
in question constitutes a performance bottleneck and have evidence
that using a class instead actually solves the problem.
If you still do not know, after considering the above, then start by
making it as a trait. You can always
change it later, and in general using a trait keeps more options open.

Why do we need traits in scala?

So, I was trying to make a finagle server, talk to sentry (not important), and stumbled upon a case, where I needed to inherit from two classes (not traits) at the same time, let's call them class SentryHandler extends Handler and class TwitterHandler extends Handler, and assume, that I need to create MyHandler, that inherits from both of them.
After a moment of stupidity, when I thought it was impossible without using a dreaded "delegation pattern", I found a solution:
trait SentryTrait extends SentryHandler
class MyHandler extends TwitterHandler with SentryTrait
Now, this got me thinking: what is the purpose of having the notion of "trait" to being with? If the idea was to enforce that you can inherit from multiple traits but only a single class, it seems awfully easy to get around. It kinda sounds like class is supposed to be the "main" line of inheritance (that you "extend a class with traits", but that isn't true either: you can extend a trait with (or without) a bunch of other traits, and no class at all.
You cannot instantiate a trait, but the same holds for an abstract class ...
The only real difference I can think of is that a trait cannot have constructor parameters. But what is the significance of that?
I mean, why not? What would the problem with something like this?
class Foo(bar: String, baz: String) extends Bar(bar) with Baz(baz)
Your solution (if I understood correctly) - doesn't work. You cannot multiinherit classes in scala:
scala> class Handler
defined class Handler
scala> class SentryHandler extends Handler
defined class SentryHandler
scala> class TwitterHandler extends Handler
defined class TwitterHandler
scala> trait SentryTrait extends SentryHandler
defined trait SentryTrait
scala> class MyHandler extends TwitterHandler with SentryTrait
<console>:11: error: illegal inheritance; superclass TwitterHandler
is not a subclass of the superclass SentryHandler
of the mixin trait SentryTrait
class MyHandler extends TwitterHandler with SentryTrait
As for the question - why traits, as I see it, this is because traits are stackable in order to solve the famous diamond problem
trait Base { def x: Unit = () }
trait A extends Base { override def x: Unit = { println("A"); super.x}}
trait B extends Base { override def x: Unit = { println("B"); super.x}}
class T1 extends A with B {}
class T2 extends B with A {}
(new T1).x // Outputs B then A
(new T2).x // Outputs A then B
Even though trait A super is Base (for T1) it calls B implementation rather then Base. This is due to trait linearization
So for classes if you extend something - you can be sure that this base will be called next. But this is not true for traits. And that's probably why you do not have trait constructor parameters
The question should rather be: why do we need classes in Scala? Martin Odersky has said that Scala could get by with just traits. We would need to add constructors to traits, so that instances of traits can be constructed. That's okay, Odersky has said that he has worked out a linearization algorithm for trait constructors.
The real purpose is platform interoperability.
Several of the platforms Scala intends to integrate with (currently Java, formerly .NET, maybe in the future Cocoa/Core Foundation/Swift/Objective-C) have a distinct notion of classes, and it is not always easy to have a 1:1 mapping between Scala traits and platform classes. This is different, for example, from interfaces: there is a trivial mapping between platform interfaces and Scala traits – a trait with only abstract members is isomorphic to an interface.
Classes, packages, and null are some examples of Scala features whose main purpose is platform integration.
The Scala designers try very hard to keep the language small, simple, and orthogonal. But Scala is also explicitly intended to integrate well with existing platforms. In fact, even though Scala is a fine language in itself, it was specifically designed as a replacement for the major platform languages (Java on the Java platform, C# on the .NET platform). And in order to do that, some compromises have to be made:
Scala has classes, even though they are redundant with traits (assuming we add constructors to traits), because it's easy to map Scala classes to platform classes and almost impossible to map traits to platform classes. Just look at the hoops Scala has to jump through to compile traits to efficient JVM bytecode. (For every trait there is an interface which contains the API and a static class which contains the methods. For every class the trait is mixed into, a forwarder class is generated that forwards the method calls to trait methods to the static class belonging to that trait.)
Scala has packages, even though they are redundant with objects. Scala packages can be trivially mapped to Java packages and .NET namespaces. Objects can't.
Package Objects are a way to overcome some of the limitations of packages, if we didn't have packages, we wouldn't need package objects.
Type Erasure. It is perfectly possible to keep generic types around when compiling to the JVM, e.g. you could store them in annotations. But third-party Java libraries will have their types erased anyway, and other languages won't understand the annotations and treat Scala types as erased, too, so you have to deal with Type Erasure anyway, and if you have to do it anyway, then why do both?
null, of course. It is just not possible to automatically map between null and Option in any sane way, when interoperating with real-world Java code. You have to have null in Scala, even though we rather wished it weren't there.
The problem with having constructors and state in a trait (which then makes it a class) is with multiple inheritance. While this is technically possible in a hypothetical language, it is terrible for language definition and for understanding the program code. The diamond problem, mentioned in other responses to this question), causes the highest level base class constructor to be called twice (the constructor of A in the example below).
Consider this code in a Scala-like language that allows multiple inheritance:
Class A(val x: Int)
class B extends A(1)
class C extends A(2)
class D extends B, C
If state is included, then you have to have two copies of the value x in class A. So you have two copies of class A (or one copy and the diamond problem - so called due to the diamond shape of the UML inheritance diagram).
Diamond Multiple Inheritance
The early versions of the C++ compiler (called C-Front) had lots of bugs with this and the compiler or the compiled code often crashed handling them. Issues include if you have a reference to B or C, how do you (the compiler, actually) determine the start of the object? The compiler needs to know that in order to cast the object from the Base type (in the image below, or A in the image above) to the Descendant type (D in the image above).
Multiple Inheritance Memory Layout
But, does this apply to traits? The way I understand it, Traits are an easy way to implement composition using the Delegation Pattern (I assume you all know the GoF patterns). When we implement Delegation in any other language (Java, C++, C#), we keep a reference to the other object and delegate a message to it by calling the method in its class. If traits are implemented in Scala internally by simply keeping a reference and calling its method, then traits do exactly the same thing as Delegation. So, why can't it have a constructor? I think it should be able to have one without violating its intent.
The only real difference I can think of is that a trait cannot have constructor parameters. But what is the significance of that? I mean, why not?
Consider
trait A(val x: Int)
trait B extends A(1)
trait C extends A(2)
class D extends B with C
What should (new D {}).x be? Note: there are plans to add trait parameters in Scala 3, but still with restrictions, so that the above is not allowed.

How to determine to use trait to 'with' or class to 'inject'?

I'm puzzled to choose a trait or class when writing scala code.
At first, I have a controller which with several traits:
class MyController extends Controller
with TransactionSupport
with JsonConverterSupport
with LoggerSupport
In these traits, I defined some methods and fields which can be used in MyController directly.
But my friend says: when you extends or with a trait, it should be a that trait.
Look at the MyController, it is a Controller, but it isn't a TransactionSupport, not a JsonConverterSupport, not a LoggerSupport, so it should not with them.
So the code becomes:
class MyController(tranSupport: TransactionSupport,
jsonConverter: JsonConverterSupport,
loggerSupport: LoggerSupport) extends Controller
But I don't feel good about this code, it just seems strange.
I see traits used heavily in scala code, when should I use it or use classes to inject?
I'll refer you to Interfaces should be Adjectives. Though some traits may play the part of a class (and, therefore, be nouns and respect the "is-a" relationship), when used as mixins they'll tend to play the part of interfaces.
As an "adjective", the trait will add a qualifying property to whatever they are extending. For example, they may be Comparable or Serializable.
It can be a bit hard to find an adjective to fit -- what adjective would you use for LoggerSupport? -- so don't feel overly constrained by that. Just be aware that it is completely wrong to thing of traits as necessarily an "is-a" relationship.
I would try to avoid using traits to replace "has-a" relationships, though.
My opinion is that it doesn't have to be it. Mixing-in is a different concept than inheritance. Even though syntactically it is the same, it doesn't mean the same. Typical use case for mixing-in is logging just like you wrote. It doesn't mean that if your service class mixes-in a Logging trait that it is a logger. It's just a yet another way how to compose functionality into working objects.
Odersky proposes that if you are not sure and you can, use traits because they are more flexible. You can change trait to class in the future if you need.
Sometime when I feel that mixing-in trait doesn't look good, I use module pattern like this:
trait JsonConverterModule {
protected def jsonConverter: JsonConverter
protected trait JsonConverter {
def convert(in: Json): Json
}
}
class MyController extends Controller with JsonConverterModule {
private doSmth = jsonConverter.convert(...)
}
MyController in this case looks more like a Controller, and all Json-related stuff is hidden from MyController 'client'
Your first example with traits is the "cake pattern" and your second example is "constructor injection". Both are perfectly valid ways to do dependency injection in Scala. The cake pattern is powerful, you can inject type members, the different traits can easily talk to each other (we don't have to create separate objects and pass them to each other object, often requiring setter injection rather than simple constructor injection), etc. However, the type has to be realized at compile-time, and a separate class must be realized for every combination of traits. Constructor injection lets you build your object at run-time and scales better for a large number of combinations.