I've implemented a neural network for the pattern recognition.
From the two classes of images I've used SIFT feature + BOvW to make the image descriptor.
After training and validation I've got confusion matrix with accuracy 80% overall.
here I am having two doubts
(I've done it in MATLAB GUI)
1)when ever I am training the network it gives different values (confusion matrix) in that case how can I validate the network? (MATLAB documentation says its due to different initial conditions how can I set one then?, I am not changing division of images)
2) how can I use this network to tell the category of the image if I input one, after training and validation
Related
Background
I've been studying Neural Networks, specifically the implmentation provided by this incredible online book. In the example network provided, we're shown how to create a neural network that classifies the MNIST training data to perform Optical Character Recognition (OCR).
The network is configured so that the input stimuli represents a discrete range of thresholded pixel data from a 24x24 image; at the output, we have ten signal paths which represent each of the different solutions for the input images; these are used classify a handwritten digit from zero to nine. In this implementation, a handwritten '3' would drive a strong signal down the third output path.
Now, I've seen that Neural Networks can be applied to far more 'unpredictable' output solutions; for example, take the team who taught a network to recognize the hair on a human:
Question
Surely in the application above, we couldn't use a fixed output array length because the number of points that would qualify within an image would vary just so wildly between different samples. Can anyone recommend what kind of pattern would have been used to accomplish this?
Assumption
In the interest of completeness, I'm going to propose that the team could have employed a kind of 'line following robot' for the classification task. So for an input image, a network could be trained by using a small range of discrete commands (LEFT, RIGHT, UP, DOWN) for a fixed period t and train the network to control the robot like an Etch-a-Sketch.
Alternatively, we could implement a network which would map pixels one-to-one, and define whether individual pixels contributed to hair; but this wouldn't be compatible with different image resolutions.
So, do either of these solutions sound plausable? If so, are these basic implementations of a known generic solution for this kind of problem? What approach would you use?
So here is there setup, I have a set of images (labeled train and test) and I want to train a conv net that tells me whether or not a specific object is within this image.
To do this, I followed the tensorflow tutorial on MNIST, and I train a simple conv net reduced to the area of interest (the object) which are training on image of size 128x128. The architecture is as follows : successively 3 layers consisting of 2 conv layers and 1 max pool down-sampling layers, and one fully connected softmax layers (with two class 0 and 1 whether the object is present or not)
I impleted it using tensorflow, and this works quite well, but since I have enough computing power I was wondering how I could improve the complexity of the classification:
- adding more layers ?
- adding more channel at each layer ? (currently 32,64,128 and 1024 for the fully connected)
- anything else ?
But the most important part is that now I want to detect this same object on larger images (roughle 600x600 whereas the size of the object should be around 100x100).
I was wondering how I could use the previously training "small" network used for small images, in order to pretrained a larger network on the large images ? One option could be to classify the image using a slicing window of size 128x128 and scan the whole image but I would like to try if possible to train a whole network on it.
Any suggestion on how to proceed ? Or an article / ressource tackling this kind of problem ? (I am really new to deep learning so sorry if this is stupid question...)
Thanks !
I suggest that you continue reading on the field overall. Your search keys include CNN, image classification, neural net, AlexNet, GoogleNet, and ResNet. This will return many articles, on-line classes and lectures, and other materials to help you learn about classification with neural nets.
Don't just add layers or filters: the complexity of the topology (net design) must be fitted to the task; a net that's too complex will over-fit the training data. The one you've been using is probably LeNet; the three I cite above are for the ImageNet image classification contest.
Since you are working on images, I would suggest you to use a pretrained image classification network (like VGG, Alexnet etc.)and fine tune this network with your 128x128 image data. In my experience until we have very large data set fine tuned network will give more accuracy and also save training time. After building a good image classifier on your data set you can use any popular algorithm to generate region of proposal from the image. Now take all regions of proposal and pass them to classification network one by one and check weather this network is classifying given region of proposal as positive or negative. If it classifying as positively then most probably your object is present in that region. Otherwise it's not. If there are a lot of region of proposal in which object is present according to classifier then you can use non maximal suppression algorithms to reduce number of positive proposals.
I was working on webots which is an environment used to model, program and simulate mobile robots. Basically i have a small robot with a VGA camera, and it looks for simple blue coloured patterns on white walls of a small lego maze and moves accordingly
The method I used here was
Obtain images of the patterns from webots and save it in a location
in PC.
Detect the blue pattern, form a square enclosing the pattern
with atleast 2 edges of the pattern being part of the boundary of the
square.
Resize it to 7x7 matrix(using nearest neighbour
interpolation algorithm)
The input to the network is nothing but the red pixel intensities of each of the 7x7 image(when i look at the blue pixel through a red filter it appears black so). The intensities of each pixel is extracted and the 7x7 matrix is then converted it to a 1D vector i.e 1x49 which is my input to the neural network. (I chose this characteristic as my input because it is 'relatively' less difficult to access this information using C and webots.)
I used MATLAB for this offline training method and I used a slower learning rate(0.06) to ensure parameter convergence and tested it on large and small datasets(1189 and 346 respectively). On all the numerous times I have tried, the network fails to classify the pattern.(it says the pattern belongs to all the 4 classes !!!! ) . There is nothing wrong with the program as I tested it out on the simpleclass_dataset in matlab and it works almost perfectly
Is it possible that the neural network fails to learn the function because of really poor data? (by poor data i mean that the datapoints corresponding to one sample of one class are very close to another sample belonging to a different class or something of that sort). Or can the neural network fail because of very poor feature descriptors?
Can anyone suggest a simpler method to extract features from the image(I am now shifting to MATLAB as I am now only concerned with simulations in webots and not the real robot). What sort of features can I choose? The patterns are very simple (L,an inverted L and its reflected versions are the 4 patterns)
Neural networks CAN fail to learn a function; this is most often caused by employing a network topology which is too simple to model the necessary function. A classic example of this case is attempting to learn an XOR function using a perceptron classifier, although it can even happen in multilayer neural nets sometimes; especially for complex tasks like image recognition. See my previous answer for a rough guide on how to select neural network parameters (ignore the convolution stuff if you want, although I would highly recommened looking into convolutional neural networks if you are still having problems).
It is a possiblity that there is too little seperability between classes, although I doubt that this is the case given your current features. Is there a reason that your network needs to allow an image to be four classifications simultaneously? If not, then perhaps you could classify the input as the output with the highest activation instead of all those with high activations.
Recently, I am trying to using Matlab build-in neural networks toolbox to accomplish my classification problem. However, I have some questions about the parameter settings.
a. The number of neurons in the hidden layer:
The example on this page Matlab neural networks classification example shows a two-layer (i.e. one-hidden-layer and one-output-layer) feed forward neural networks. In this example, it uses 10 neurons in the hidden layer
net = patternnet(10);
My first question is how to define the best number of neurons for my classification problem? Should I use cross-validation method to get the best performed number of neurons using a training data set?
b. Is there a method to choose three-layer or more multi-layer neural networks?
c. There are many different training method we can use in the neural networks toolbox. A list can be found at Training methods list. The page mentioned that the fastest training function is generally 'trainlm'; however, generally speaking, which one will perform best? Or it totally depends on the data set I am using?
d. In each training method, there is a parameter called 'epochs', which is the training iteration for my understanding. For each training method, Matlab defined the maximum number of epochs to train. However, from the example, it seems like 'epochs' is another parameter we can tune. Am I right? Or we just set the maximum number of epochs or leave it as default?
Any experience with Matlab neural networks toolbox is welcome and thanks very much for your reply. A.
a. You can refer to How to choose number of hidden layers and nodes in neural network? and ftp://ftp.sas.com/pub/neural/FAQ3.html#A_hu
Surely you can do cross-validation to determine the parameter of best number of neurons. But it's not recommended as it's more suitable to use it in the stage of weights training of a certain network.
b. Refer to ftp://ftp.sas.com/pub/neural/FAQ3.html#A_hl
And for more layers of neural network, you can refer to Deep Learning, which is very hot in recent years and gets state-of-the-art performances in many of the pattern recognition tasks.
c. It depends on your data. trainlm performs better on function fitting (nonlinear regression) problems than on pattern recognition problems while training large networks and pattern recognition networks, trainscg and trainrp are good choices. Generally, Gradient Descent and Resilient Backpropagation is recommended. More detailed comparison can be found here: http://www.mathworks.cn/cn/help/nnet/ug/choose-a-multilayer-neural-network-training-function.html
d. Yes, you're right. We can tune the epochs parameter. Generally you can output the recognition results/accuracy at every epoch and you will see that it is promoting more and more slowly, and the more epochs the more computing time. You can make a compromise between the accuracy and computation time.
For part b of your question:
You can use like this code:
net = patternnet([10 15 20]);
This script create a network with 3 hidden layer that first layer has 10 neurons, second layer has 15 neurons and 3th layer has 20 neurons.
I have already extracted the features of a fingerprint database then a Neural Network should be applied to classify the images by gender. I haven't worked with NN yet and I know a bit.
What type of NN should be used? Is it Artificial Neural Network or Multi-layer perceptron?
If the image size is not the same among all, does it matter?
Maybe some code sample in this area could help.
A neural network is a function approximator. You can think of it as a high-tech cousin to piecewise linear fitting. If you want to fit the most complex phenomena ever with a single parameter - you are going to get the mean and should not be surprised if it isn't infinitely useful. To get a useful fit, you must couple the nature of the phenomena being modeled with the NN. If you are modeling a planar surface, then you are going to need more than one coefficient (typically 3 or 4 depending on your formulation).
One of the questions behind this question is "what is the basis of fingerprints". By basis I mean the heavily baggaged word from Linear Algebra and calculus that talks about vector spaces, span, and eigens. Once you know what the "basis" is then you can build a neural network to approximate the basis, and this neural network will give reasonable results.
So while I was looking for a paper on the basis, I found this:
http://phys.org/news/2012-02-experts-human-error-fingerprint-analysis.html
http://phys.org/news/2013-07-fingerprint-grading.html
http://phys.org/news/2013-04-forensic-scientists-recover-fingerprints-foods.html
http://phys.org/news/2012-11-method-artificial-fingerprints.html
http://phys.org/news/2011-08-chemist-contributes-method-recovering-fingerprints.html
And here you go, a good document of the basis of fingerprints:
http://math.arizona.edu/~anewell/publications/Fingerprint_Formation.pdf
Taking a very crude stab, you might try growing some variation on an narxnet (nonlinear autogregressive network with external inputs) link. I would grow it until it characterizes your set using some sort of doubling the capacity. I would look at convergence rates as a function of "size" so that the smaller networks inform how long convergence takes for the larger ones. That means it might take a very large network to make this work, but large networks are like the 787 - they cost a lot, take forever to build, and sometimes do not fly well.
If I were being clever, I would pay attention to the article by Kucken and formulate the inputs as some sort of a inverse modeling of a stress field.
Best of luck.
You can try a SOM/LVQ network for classification in MATLAB, and image sizes does matter you should try to normalize the images down to a standard size before doing the feature extraction. This will ensure that each feature vector gets assigned to an input neuron.
function scan(img)
files = dir('*.jpg');
hist = [];
for n = 1 : length(files)
filename = files(n).name;
file = imread(filename);
hist = [hist, imhist(rgb2gray(imresize(file,[ 50 50])))]; %#ok
end
som = selforgmap([10 10]);
som = train(som, hist);
t = som(hist); %extract class data
net = lvqnet(10);
net = train(net, hist, t);
like(img, hist, files, net)
end
Doesn't have code examples but this paper may be helpful: An Effective Fingerprint Verification Technique, Gogoi & Bhattacharyya
This paper presents an effective method for fingerprint verification based on a data mining technique called minutiae clustering and a graph-theoretic approach to analyze the process of fingerprint comparison to give a feature space representation of minutiae and to produce a lower bound on the number of detectably distinct fingerprints. The method also proving the invariance of each individual fingerprint by using both the topological behavior of the minutiae graph and also using a distance measure called Hausdorff distance.The method provides a graph based index generation mechanism of fingerprint biometric data. The self-organizing map neural network is also used for classifying the fingerprints.