Can neural network fail to learn a function? and How to choose better feature descriptors for pattern recognition? - matlab

I was working on webots which is an environment used to model, program and simulate mobile robots. Basically i have a small robot with a VGA camera, and it looks for simple blue coloured patterns on white walls of a small lego maze and moves accordingly
The method I used here was
​
Obtain images of the patterns from webots and save it in a location
in PC.
​​Detect the blue pattern, form a square enclosing the pattern
with atleast 2 edges of the pattern being part of the boundary of the
square.
​Resize it to 7x7 matrix(using nearest neighbour
interpolation algorithm)
The input to the network is nothing but the red pixel intensities of each of the 7x7 image(when i look at the blue pixel through a red filter it appears black so). The intensities of each pixel is extracted and the 7x7 matrix is then converted it to a 1D vector i.e 1x49 which is my input to the neural network. (I chose this characteristic as my input because it is 'relatively' less difficult to access this information using C and webots.​​)
I used MATLAB for this offline training method and I used a slower learning rate(0.06) to ensure parameter convergence and tested it on large and small datasets(1189 and 346 respectively). On all the numerous times I have tried, the network fails to classify the pattern.(it says the pattern belongs to all the 4 classes !!!! ) . There is nothing wrong with the program as I tested it out on the simpleclass_dataset in matlab and it works almost perfectly
Is it possible that the neural network fails to learn the function because of really poor data? (by poor data i mean that the datapoints corresponding to one sample of one class are very close to another sample belonging to a different class or something of that sort). Or can the neural network fail because of very poor feature descriptors?
Can anyone suggest a simpler method to extract features from the image(I am now shifting to MATLAB as I am now only concerned with simulations in webots and not the real robot). What sort of features can I choose? The patterns are very simple (L,an inverted L and its reflected versions are the 4 patterns)

Neural networks CAN fail to learn a function; this is most often caused by employing a network topology which is too simple to model the necessary function. A classic example of this case is attempting to learn an XOR function using a perceptron classifier, although it can even happen in multilayer neural nets sometimes; especially for complex tasks like image recognition. See my previous answer for a rough guide on how to select neural network parameters (ignore the convolution stuff if you want, although I would highly recommened looking into convolutional neural networks if you are still having problems).
It is a possiblity that there is too little seperability between classes, although I doubt that this is the case given your current features. Is there a reason that your network needs to allow an image to be four classifications simultaneously? If not, then perhaps you could classify the input as the output with the highest activation instead of all those with high activations.

Related

How does a neural network produce an array?

Background
I've been studying Neural Networks, specifically the implmentation provided by this incredible online book. In the example network provided, we're shown how to create a neural network that classifies the MNIST training data to perform Optical Character Recognition (OCR).
The network is configured so that the input stimuli represents a discrete range of thresholded pixel data from a 24x24 image; at the output, we have ten signal paths which represent each of the different solutions for the input images; these are used classify a handwritten digit from zero to nine. In this implementation, a handwritten '3' would drive a strong signal down the third output path.
Now, I've seen that Neural Networks can be applied to far more 'unpredictable' output solutions; for example, take the team who taught a network to recognize the hair on a human:
Question
Surely in the application above, we couldn't use a fixed output array length because the number of points that would qualify within an image would vary just so wildly between different samples. Can anyone recommend what kind of pattern would have been used to accomplish this?
Assumption
In the interest of completeness, I'm going to propose that the team could have employed a kind of 'line following robot' for the classification task. So for an input image, a network could be trained by using a small range of discrete commands (LEFT, RIGHT, UP, DOWN) for a fixed period t and train the network to control the robot like an Etch-a-Sketch.
Alternatively, we could implement a network which would map pixels one-to-one, and define whether individual pixels contributed to hair; but this wouldn't be compatible with different image resolutions.
So, do either of these solutions sound plausable? If so, are these basic implementations of a known generic solution for this kind of problem? What approach would you use?

Convolutional Neural Networks, Matrix of Convolutional (Kernel)

Good afternoon! In the first stage where on input of Convolutional Neural Network (input layer) we recieve a source image (hence an image of handwritten English letter). First of all we are using an nxn window which goes from left to right for scanning image and multiplication on kernel (convolutional matrix) to build Feature maps? But nowhere written about what exact values a kernel should be have (In other words on what Kernel values I should multiply data retrieved from n*n window ). Is it suitable to multiply data on this Convolutional Kernel intended for edge detection? There a numerous Convolutional Kernels (Emboss, Gaussian Filter, Edge detection, Angle detection, etc.)? But nowhere is written to what exact kernel it is need to multiply data for detecting hand written symbols.
Sample of Edge detection 3*3 kernel
Convolutional operation for multiplication on kernel
In addition, if size of entire image is 30*30, than is it possible to use window of 5*5 for building feature maps? Would it be enough sufficient for reaching optimal precision of letter detection?
On what exact kernel it is best to multiply area of entire image for the maximum precision of letter recognition? Or initially all values in kernel is equaled to 0? Could i also ask, what formula or rule is applied to detect overall needed amount of to be built feature maps? Or if the task is in letter recognition of English Language, than in each stage of Feature maps building process there must be exact 25 feature maps? Thank you for reply!
In a CNN, the convolutional kernel is a shared weight matrix, and is learned in a similar way to other weights. It is initialized in the same way, with small random values, and the weight deltas from back propagation are summed across all the features that receive its output (i.e. usually all "pixels" in the output of the convolutional layer)
A typical random kernel will perform a little like an edge detector.
After training, the first CNN layer can be displayed and will often have learned some kernels that can be interpreted if you are familiar with image processing
There is a nice animated view of kernel features being learned here: http://cs.nyu.edu/~yann/research/sparse/
In short your answer is this: There is no need to look for correct kernels to use. Instead look for a CNN library where you set params such as number of convolutional layers, and research the way to view the kernels as they learn - most CNN libraries will have a documented way to visualise them.

Using a learned Artificial Neural Network to solve inputs

I've recently been delving into artificial neural networks again, both evolved and trained. I had a question regarding what methods, if any, to solve for inputs that would result in a target output set. Is there a name for this? Everything I try to look for leads me to backpropagation which isn't necessarily what I need. In my search, the closest thing I've come to expressing my question is
Is it possible to run a neural network in reverse?
Which told me that there, indeed, would be many solutions for networks that had varying numbers of nodes for the layers and they would not be trivial to solve for. I had the idea of just marching toward an ideal set of inputs using the weights that have been established during learning. Does anyone else have experience doing something like this?
In order to elaborate:
Say you have a network with 401 input nodes which represents a 20x20 grayscale image and a bias, two hidden layers consisting of 100+25 nodes, as well as 6 output nodes representing a classification (symbols, roman numerals, etc).
After training a neural network so that it can classify with an acceptable error, I would like to run the network backwards. This would mean I would input a classification in the output that I would like to see, and the network would imagine a set of inputs that would result in the expected output. So for the roman numeral example, this could mean that I would request it to run the net in reverse for the symbol 'X' and it would generate an image that would resemble what the net thought an 'X' looked like. In this way, I could get a good idea of the features it learned to separate the classifications. I feel as it would be very beneficial in understanding how ANNs function and learn in the grand scheme of things.
For a simple feed-forward fully connected NN, it is possible to project hidden unit activation into pixel space by taking inverse of activation function (for example Logit for sigmoid units), dividing it by sum of incoming weights and then multiplying that value by weight of each pixel. That will give visualization of average pattern, recognized by this hidden unit. Summing up these patterns for each hidden unit will result in average pattern, that corresponds to this particular set of hidden unit activities.Same procedure can be in principle be applied to to project output activations into hidden unit activity patterns.
This is indeed useful for analyzing what features NN learned in image recognition. For more complex methods you can take a look at this paper (besides everything it contains examples of patterns that NN can learn).
You can not exactly run NN in reverse, because it does not remember all information from source image - only patterns that it learned to detect. So network cannot "imagine a set inputs". However, it possible to sample probability distribution (taking weight as probability of activation of each pixel) and produce a set of patterns that can be recognized by particular neuron.
I know that you can, and I am working on a solution now. I have some code on my github here for imagining the inputs of a neural network that classifies the handwritten digits of the MNIST dataset, but I don't think it is entirely correct. Right now, I simply take a trained network and my desired output and multiply backwards by the learned weights at each layer until I have a value for inputs. This is skipping over the activation function and may have some other errors, but I am getting pretty reasonable images out of it. For example, this is the result of the trained network imagining a 3: number 3
Yes, you can run a probabilistic NN in reverse to get it to 'imagine' inputs that would match an output it's been trained to categorise.
I highly recommend Geoffrey Hinton's coursera course on NN's here:
https://www.coursera.org/course/neuralnets
He demonstrates in his introductory video a NN imagining various "2"s that it would recognise having been trained to identify the numerals 0 through 9. It's very impressive!
I think it's basically doing exactly what you're looking to do.
Gruff

How to choose the number of nodes for using BP network in face recognition?

I read some books but still cannot make sure how should I organize the network. For example, I have pgm image with size 120*100, how the input should be like(like a one dimensional array with size 120*100)? and how many nodes should I adapt.
It's typically best to organize your input image as a 2D matrix. The reason is that the layers at the lower levels of the neural networks used in machine perception tasks are typically locally connected. For example, each neuron of the first layer of such a neural net will only process the pixels of a small NxN patch of the input image. This naturally leads to a 2D structure which can be more easily described with 2D matrices.
For a detailed explanation I'll refer you to the DeepFace paper which describes the stat of the art in face recognition systems.
120*100 one dimensional vector is fine. The locations of the pixel values in that vector does not matter, because all nodes are fully connected with the nodes in the next layer anyway. But you must be consistent with their locations between training, validating, and testing.
The most successful approach so far was to go with a convolutional neural network with 2D input, just as #benoitsteiner stated. For a far simpler example I'd refer you to a LeNet-5, a small neural network developed for MNIST hand-written digit recognition. It is used in EBLearn for face recognition with quite good results.

How do neural networks handle large images where the area of interest is small?

If I've understood correctly, when training neural networks to recognize objects in images it's common to map single pixel to a single input layer node. However, sometimes we might have a large picture with only a small area of interest. For example, if we're training a neural net to recognize traffic signs, we might have images where the traffic sign covers only a small portion of it, while the rest is taken by the road, trees, sky etc. Creating a neural net which tries to find a traffic sign from every position seems extremely expensive.
My question is, are there any specific strategies to handle these sort of situations with neural networks, apart from preprocessing the image?
Thanks.
Using 1 pixel per input node is usually not done. What enters your network is the feature vector and as such you should input actual features, not raw data. Inputing raw data (with all its noise) will not only lead to bad classification but training will take longer than necessary.
In short: preprocessing is unavoidable. You need a more abstract representation of your data. There are hundreds of ways to deal with the problem you're asking. Let me give you some popular approaches.
1) Image proccessing to find regions of interest. When detecting traffic signs a common strategy is to use edge detection (i.e. convolution with some filter), apply some heuristics, use a threshold filter and isolate regions of interest (blobs, strongly connected components etc) which are taken as input to the network.
2) Applying features without any prior knowledge or image processing. Viola/Jones use a specific image representation, from which they can compute features in a very fast way. Their framework has been shown to work in real-time. (I know their original work doesn't state NNs but I applied their features to Multilayer Perceptrons in my thesis, so you can use it with any classifier, really.)
3) Deep Learning.
Learning better representations of the data can be incorporated into the neural network itself. These approaches are amongst the most popular researched atm. Since this is a very large topic, I can only give you some keywords so that you can research it on your own. Autoencoders are networks that learn efficient representations. It is possible to use them with conventional ANNs. Convolutional Neural Networks seem a bit sophisticated at first sight but they are worth checking out. Before the actual classification of a neural network, they have alternating layers of subwindow convolution (edge detection) and resampling. CNNs are currently able to achieve some of the best results in OCR.
In every scenario you have to ask yourself: Am I 1) giving my ANN a representation that has all the data it needs to do the job (a representation that is not too abstract) and 2) keeping too much noise away (and thus staying abstract enough).
We usually dont use fully connected network to deal with image because the number of units in the input layer will be huge. In neural network, we have specific neural network to deal with image which is Convolutional neural network(CNN).
However, CNN plays a role of feature extractor. The encoded feature will finally feed into a fully connected network which act as a classifier. In your case, I dont know how small your object is compare to the full image. But if the interested object is really small, even use CNN, the performance for image classification wont be very good. Then we probably need to use object detection(which used sliding window) to deal with it.
If you want recognize small objects on large sized image, you should use "scanning window".
For "scanning window" you can to apply dimention reducing methods:
DCT (http://en.wikipedia.org/wiki/Discrete_cosine_transform)
PCA (http://en.wikipedia.org/wiki/Principal_component_analysis)