I want to use a calculated variable which result has 5 decimal cases, but Matlab saves it with only 4. But I need it to have 5 decimal cases to use it in the rest of the code.
Hence: I do NOT want to display this variable to the user.
Example:
L=10;
N=1600;
fs=L/N;
Matlab stores "fs" as "0.0063" instead of "0.00625", and I need it to be "0.00625".
Thank you for your time and help!
You can use built-in function digits(n) where n is the precision parameter.
digits(5)
fs=vpa(L/N)
fs=0.00625
Related
I am very new to MATLAB. I am sorry if my question is basic. I am using "printmat" function to show some matrices in the command console. For example, printmat(A) and printmat(B), where A = 2.79 and B = 0.45e-7 is a scalar (for the sake of simplicity).
How do I increase the precision arbitrarily to seven decimals? For example: my output looks like 2.7943234 and B = 0.00000004563432.
How do I add a currency (say dollar) figure to the output of printmat?
How do I add a percentage figure (%) to the output of printmat?
Note: The reason I use printmat is that I can name my rows and columns. If you know a better function that can do all above, I would be glad to know.
Regards Mariam. From what I understand, you would like to display the numbers and show their full precision. I am also newbie, If I may contribute, you could convert the number data to string data (for display purposes) by using the sprintf function.
I am using the variable A=2.7943234 as example. This value will not display the full precision, instead it will display 2.7943. To show all the decimal tails, you could first convert this to string by
a = sprintf('%0.8f',A);
It will set the value a to a string '2.79432340'. The %0.8f means you want it to display 8 decimal tails. For this example,%0.7f is sufficient of course.
Another example: A=0.00000004563432, use %0.14f.
A=0.00000004563432;
a=sprintf('%0.14f $ or %%',A);
the output should be : '0.00000004563432 $ or %'.
You could analyze further in https://www.mathworks.com/help/matlab/ref/sprintf.html
You could try this first. If this does not help to reach your objective, I appreciate some inputs. Thanks.
The printmat function is very obsolete now. I think table objects are its intended successor (and functions such as array2table to convert a matrix to a table of data). Tables allow you to add row and column names and format the columns in different ways. I don't think there's a way to add $ or % to each number, but you can specify the units of each column.
In general, you can also format the display precision using format. Something like this may be what you want:
format long
Is there a way to convert large numerical value to *10 to the power format in sas?
Eg: 88888888383383838383 to 8.8*10^6
Thanks in advance.
You can use the format ew. where the w the number output characters. Using e8. will result in 8.9E+19. But beware that SAS uses floating point to store values internally, with a maximum of 8 bytes. Your example value would be rounded to 88,888,888,383,383,830,528 (no matter how it's formatted).
I have to import a large integer (1000 digits) into matlab to run some calculations on it. However, when I import it I seem to loose accuracy due to the fact that matlab uses the scientific notation.
Is there any way that I can get the actual integer?
Here's the actual data I have to import:
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
Such a large integer cannot be represented in IEEE floating point standard. Check out this answer for the largest double that can be represented without losing precision (its 1.7977e+308). That can be obtained by typing realmax in MATLAB.
You can use vpi (available here, as mentioned in comment) or you can use the MATLAB in-built vpa.
This is how you use vpa
R=vpa('7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450');
You can check the following:
vpa('R+1000-R')
The answer of the above is 1000 as expected. Do not forget to put your expression in quotes. Otherwise, you are passing inifinity to vpa instead of the 1000 digit number.
If you want to use vpi, its a beautiful toolbox, go ahead, download it. Go into its root directory and run the following command:
a=vpi('7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450')
Well, the advantage with vpi is as follows:
The output of vpi:
a=vpi(<<Your 1000 digit number in quotes>>); %output prints 1000 digits on screen.
The output of vpa:
R=vpa(<<Your 1000 digit number in quotes>>);
this prints:
R =
7.3167176531330624919225119674427e999
Also, with vpi, you can do something like this:
a=vpi('7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450')
b=a+1
b-a %output of this yields 1.
I somehow cannot do the operation of b-a in vpa and obtain the answer 1.
i have code and use double function several time to convert sym to double.to increase precision , I want to use digits function.
I want to know it is enough that I write digits in the top of code or I must write digits in above of every double function.
digits set's the precision until it is changed again. Calling digits() without any input you get the precision to verify it's set correct.
In many cases digis has absoluetly no influence on symbolic variables because an analytical solution is found. This means there are no precision errors unless you convert to double. When convertig, digits should be set to at least 16 because this matches double precision.
I need to generate a random number that is between .0000001 and 1, I have been using rand(1) but this only gives me 4 decimal points, is there any other way to do this generation?
Thanks!
From the Octave docs:
By default, Octave displays 5 significant digits in a human readable form (option ‘short’ paired with ‘loose’ format for matrices).
So it's probably an issue with the way you're printing the value rather than the value itself.
That same page shows the other output formats in addition to short, the one you may want to look in to is long, giving 15 significant digits.
And there is also the output_precision which can be set as per here:
old_val = output_precision (7)
disp (whatever)
old_val = output_precision (old_val)
Set the output_precision to 7 and it should be ok :)
Setting the output precision won't help though because the number can still be less than .0000001 in theory but you will only be displaying the first 7 digits. The simplest way is:
req=0;
while (req<.0000001)
req=rand(1);
end
It is possible that this could get you stuck in a loop but it will produce the right number. To display all the decimals you can also use the following command:
format long
This will show you 15 decimal places. To switch back go:
formay short