MATLAB: Generate sample from a known density function - matlab

I want to write a function that generates samples from a distribution. To do that, I know its continuous density function. The first idea that came into mind was to write a code like this one:
% a and b are know coefficients.
% besselj is a MATLAB function.
x = 0:0.0001:5;
% PDF=density function (PDF=a (1 x 50.000) vector)
PDF = (x/b).*exp(-(x.^2+a^2)./(2*b)).*besselj(1,(x.*a)./b);
% density function has to be normalized
PDF = PDF./sum(PDF)
% y=the vector containing the sample
[temp , y] = histc(rand(1 , N), [0 cumsum(PDF)]);
For the curious ones, this density function represents a Rice distribution ;-).
However, on second thoughts, this algorithm seems bad. Indeed, from a 100%-known density function, I get a partially-known discretized density function (the vector PDF) and I rely on this new density function to obtain samples. I think that some information is lost because of the discretization.
So, my question is the following: Is there a way I can generate sample from a continuous density function without loosing information ?
Moreover, the code above doesn't seem good to me because the magnitudes of the plot(x,PDF) before and after the normalization are absolutely not the same.

Related

Inverse cumulative distribution function in MATLAB given an empirical PDF

Is it possible to generate random numbers with a distribution that depends on empirical probability data? I imagine this is possible by taking the inverse cumulative distribution function. I have seen some examples where this is done in MATLAB (the software that I'm using) but all of those examples have an underlying analytic form for the probability. Here I have only the PDF. For instance, I have data of probabilities for a particular event. Most of the probabilities are zero and hence not unique, but not all.
My goal is to generate the random numbers and then figure out what the distribution is. I'd really appreciate if people can help clear up my thinking here.
EDIT:
I think I want something like:
cdf=cumsum(pdf); % calculate pdf from empirical pdf
M=length(cdf);
xq=linspace(0,1,M);
invcdf=interp1(cdf,xq,xq); % calculate inverse cdf, i.e., x
but how do I take into account that a lot of the values of the pdf are zero and not unique? Is this even the right approach?
I am basing my answer on Inverse empirical cumulative distribution function from the MathWorks File Exchange. See that link for other suggestions to solving your problem.
% y - input: data set
% q - input: desired quantile (can be a scalar or a vector)
% xq - output: ICDF at specified quantile
[f, x] = ecdf(y);
xq = zeros(size(q));
for ii = 1:length(q)
xq(ii) = min(x(q(ii) <= f));
end
I'd eliminate the for loop if you're only using scalars. Also, there may be a more efficient way to vectorize the for loop, but this should at least get you started.

MATLAB: polyval function for N greater than 1

I am trying trying to graph the polynomial fit of a 2D dataset in Matlab.
This is what I tried:
rawTable = readtable('Test_data.xlsx','Sheet','Sheet1');
x = rawTable.A;
y = rawTable.B;
figure(1)
scatter(x,y)
c = polyfit(x,y,2);
y_fitted = polyval(c,x);
hold on
plot(x,y_fitted,'r','LineWidth',2)
rawTable.A and rawTable.A are randomly generated numbers. (i.e. the x dataset cannot be represented in the following form : x=0:0.1:100)
The result:
second-order polynomial
But the result I expect looks like this (generated in Excel):
enter image description here
How can I graph the second-order polynomial fit in MATLAB?
I sense some confusion regarding what the output of each of those Matlab function mean. So I'll clarify. And I think we need some details as well. So expect some verbosity. A quick answer, however, is available at the end.
c = polyfit(x,y,2) gives the coefficient vectors of the polynomial fit. You can get the fit information such as error estimate following the documentation.
Name this polynomial as P. P in Matlab is actually the function P=#(x)c(1)*x.^2+c(2)*x+c(3).
Suppose you have a single point X, then polyval(c,X) outputs the value of P(X). And if x is a vector, polyval(c,x) is a vector corresponding to [P(x(1)), P(x(2)),...].
Now that does not represent what the fit is. Just as a quick hack to see something visually, you can try plot(sort(x),polyval(c,sort(x)),'r','LineWidth',2), ie. you can first sort your data and try plotting on those x-values.
However, it is only a hack because a) your data set may be so irregularly spaced that the spline doesn't represent function or b) evaluating on the whole of your data set is unnecessary and inefficient.
The robust and 'standard' way to plot a 2D function of known analytical form in Matlab is as follows:
Define some evenly-spaced x-values over the interval you want to plot the function. For example, x=1:0.1:10. For example, x=linspace(0,1,100).
Evaluate the function on these x-values
Put the above two components into plot(). plot() can either plot the function as sampled points, or connect the points with automatic spline, which is the default.
(For step 1, quadrature is ambiguous but specific enough of a term to describe this process if you wish to communicate with a single word.)
So, instead of using the x in your original data set, you should do something like:
t=linspace(min(x),max(x),100);
plot(t,polyval(c,t),'r','LineWidth',2)

Generate random samples from arbitrary discrete probability density function in Matlab

I've got an arbitrary probability density function discretized as a matrix in Matlab, that means that for every pair x,y the probability is stored in the matrix:
A(x,y) = probability
This is a 100x100 matrix, and I would like to be able to generate random samples of two dimensions (x,y) out of this matrix and also, if possible, to be able to calculate the mean and other moments of the PDF. I want to do this because after resampling, I want to fit the samples to an approximated Gaussian Mixture Model.
I've been looking everywhere but I haven't found anything as specific as this. I hope you may be able to help me.
Thank you.
If you really have a discrete probably density function defined by A (as opposed to a continuous probability density function that is merely described by A), you can "cheat" by turning your 2D problem into a 1D problem.
%define the possible values for the (x,y) pair
row_vals = [1:size(A,1)]'*ones(1,size(A,2)); %all x values
col_vals = ones(size(A,1),1)*[1:size(A,2)]; %all y values
%convert your 2D problem into a 1D problem
A = A(:);
row_vals = row_vals(:);
col_vals = col_vals(:);
%calculate your fake 1D CDF, assumes sum(A(:))==1
CDF = cumsum(A); %remember, first term out of of cumsum is not zero
%because of the operation we're doing below (interp1 followed by ceil)
%we need the CDF to start at zero
CDF = [0; CDF(:)];
%generate random values
N_vals = 1000; %give me 1000 values
rand_vals = rand(N_vals,1); %spans zero to one
%look into CDF to see which index the rand val corresponds to
out_val = interp1(CDF,[0:1/(length(CDF)-1):1],rand_vals); %spans zero to one
ind = ceil(out_val*length(A));
%using the inds, you can lookup each pair of values
xy_values = [row_vals(ind) col_vals(ind)];
I hope that this helps!
Chip
I don't believe matlab has built-in functionality for generating multivariate random variables with arbitrary distribution. As a matter of fact, the same is true for univariate random numbers. But while the latter can be easily generated based on the cumulative distribution function, the CDF does not exist for multivariate distributions, so generating such numbers is much more messy (the main problem is the fact that 2 or more variables have correlation). So this part of your question is far beyond the scope of this site.
Since half an answer is better than no answer, here's how you can compute the mean and higher moments numerically using matlab:
%generate some dummy input
xv=linspace(-50,50,101);
yv=linspace(-30,30,100);
[x y]=meshgrid(xv,yv);
%define a discretized two-hump Gaussian distribution
A=floor(15*exp(-((x-10).^2+y.^2)/100)+15*exp(-((x+25).^2+y.^2)/100));
A=A/sum(A(:)); %normalized to sum to 1
%plot it if you like
%figure;
%surf(x,y,A)
%actual half-answer starts here
%get normalized pdf
weight=trapz(xv,trapz(yv,A));
A=A/weight; %A normalized to 1 according to trapz^2
%mean
mean_x=trapz(xv,trapz(yv,A.*x));
mean_y=trapz(xv,trapz(yv,A.*y));
So, the point is that you can perform a double integral on a rectangular mesh using two consecutive calls to trapz. This allows you to compute the integral of any quantity that has the same shape as your mesh, but a drawback is that vector components have to be computed independently. If you only wish to compute things which can be parametrized with x and y (which are naturally the same size as you mesh), then you can get along without having to do any additional thinking.
You could also define a function for the integration:
function res=trapz2(xv,yv,A,arg)
if ~isscalar(arg) && any(size(arg)~=size(A))
error('Size of A and var must be the same!')
end
res=trapz(xv,trapz(yv,A.*arg));
end
This way you can compute stuff like
weight=trapz2(xv,yv,A,1);
mean_x=trapz2(xv,yv,A,x);
NOTE: the reason I used a 101x100 mesh in the example is that the double call to trapz should be performed in the proper order. If you interchange xv and yv in the calls, you get the wrong answer due to inconsistency with the definition of A, but this will not be evident if A is square. I suggest avoiding symmetric quantities during the development stage.

Fitting a 2D Gaussian to 2D Data Matlab

I have a vector of x and y coordinates drawn from two separate unknown Gaussian distributions. I would like to fit these points to a three dimensional Gauss function and evaluate this function at any x and y.
So far the only manner I've found of doing this is using a Gaussian Mixture model with a maximum of 1 component (see code below) and going into the handle of ezcontour to take the X, Y, and Z data out.
The problems with this method is firstly that its a very ugly roundabout manner of getting this done and secondly the ezcontour command only gives me a grid of 60x60 but I need a much higher resolution.
Does anyone know a more elegant and useful method that will allow me to find the underlying Gauss function and extract its value at any x and y?
Code:
GaussDistribution = fitgmdist([varX varY],1); %Not exactly the intention of fitgmdist, but it gets the job done.
h = ezcontour(#(x,y)pdf(GaussDistributions,[x y]),[-500 -400], [-40 40]);
Gaussian Distribution in general form is like this:
I am not allowed to upload picture but the Formula of gaussian is:
1/((2*pi)^(D/2)*sqrt(det(Sigma)))*exp(-1/2*(x-Mu)*Sigma^-1*(x-Mu)');
where D is the data dimension (for you is 2);
Sigma is covariance matrix;
and Mu is mean of each data vector.
here is an example. In this example a guassian is fitted into two vectors of randomly generated samples from normal distributions with parameters N1(4,7) and N2(-2,4):
Data = [random('norm',4,7,30,1),random('norm',-2,4,30,1)];
X = -25:.2:25;
Y = -25:.2:25;
D = length(Data(1,:));
Mu = mean(Data);
Sigma = cov(Data);
P_Gaussian = zeros(length(X),length(Y));
for i=1:length(X)
for j=1:length(Y)
x = [X(i),Y(j)];
P_Gaussian(i,j) = 1/((2*pi)^(D/2)*sqrt(det(Sigma)))...
*exp(-1/2*(x-Mu)*Sigma^-1*(x-Mu)');
end
end
mesh(P_Gaussian)
run the code in matlab. For the sake of clarity I wrote the code like this it can be written more more efficient from programming point of view.

matlab: cdfplot of relative error

The figure shown above is the plot of cumulative distribution function (cdf) plot for relative error (attached together the code used to generate the plot). The relative error is defined as abs(measured-predicted)/(measured). May I know the possible error/interpretation as the plot is supposed to be a smooth curve.
X = load('measured.txt');
Xhat = load('predicted.txt');
idx = find(X>0);
x = X(idx);
xhat = Xhat(idx);
relativeError = abs(x-xhat)./(x);
cdfplot(relativeError);
The input data file is a 4x4 matrix with zeros on the diagonal and some unmeasured entries (represent with 0). Appreciate for your kind help. Thanks!
The plot should be a discontinuous one because you are using discrete data. You are not plotting an analytic function which has an explicit (or implicit) function that maps, say, x to y. Instead, all you have is at most 16 points that relates x and y.
The CDF only "grows" when new samples are counted; otherwise its value remains steady, just because there isn't any satisfying sample that could increase the "frequency".
You can check the example in Mathworks' `cdfplot1 documentation to understand the concept of "empirical cdf". Again, only when you observe a sample can you increase the cdf.
If you really want to "get" a smooth curve, either 1) add more points so that the discontinuous line looks smoother, or 2) find any statistical model of whatever you are working on, and plot the analytic function instead.