I want to apply preprocessing phase on a large amount of text data in Spark-Scala such as Lemmatization - Remove Stop Words(using Tf-Idf) - POS tagging , there is any way to implement them in Spark - Scala ?
for example here is one sample of my data:
The perfect fit for my iPod photo. Great sound for a great price. I use it everywhere. it is very usefulness for me.
after preprocessing:
perfect fit iPod photo great sound great price use everywhere very useful
and they have POS tags e.g (iPod,NN) (photo,NN)
there is a POS tagging (sister.arizona) is it applicable in Spark?
Anything is possible. The question is what YOUR preferred way of doing this would be.
For example, do you have a stop word dictionary that works for you (it could just simply be a Set), or would you want to run TF-IDF to automatically pick the stop words (note that this would require some supervision, such as picking the threshold at which the word would be considered a stop word). You can provide the dictionary, and Spark's MLLib already comes with TF-IDF.
The POS tags step is tricky. Most NLP libraries on the JVM (e.g. Stanford CoreNLP) don't implement java.io.Serializable, but you can perform the map step using them, e.g.
myRdd.map(functionToEmitPOSTags)
On the other hand, don't emit an RDD that contains non-serializable classes from that NLP library, since steps such as collect(), saveAsNewAPIHadoopFile, etc. will fail. Also to reduce headaches with serialization, use Kryo instead of the default Java serialization. There are numerous posts about this issue if you google around, but see here and here.
Once you figure out the serialization issues, you need to figure out which NLP library to use to generate the POS tags. There are plenty of those, e.g. Stanford CoreNLP, LingPipe and Mallet for Java, Epic for Scala, etc. Note that you can of course use the Java NLP libraries with Scala, including with wrappers such as the University of Arizona's Sista wrapper around Stanford CoreNLP, etc.
Also, why didn't your example lower-case the processed text? That's pretty much the first thing I would do. If you have special cases such as iPod, you could apply the lower-casing except in those cases. In general, though, I would lower-case everything. If you're removing punctuation, you should probably first split the text into sentences (split on the period using regex, etc.). If you're removing punctuation in general, that can of course be done using regex.
How deeply do you want to stem? For example, the Porter stemmer (there are implementations in every NLP library) stems so deeply that "universe" and "university" become the same resulting stem. Do you really want that? There are less aggressive stemmers out there, depending on your use case. Also, why use stemming if you can use lemmatization, i.e. splitting the word into the grammatical prefix, root and suffix (e.g. walked = walk (root) + ed (suffix)). The roots would then give you better results than stems in most cases. Most NLP libraries that I mentioned above do that.
Also, what's your distinction between a stop word and a non-useful word? For example, you removed the pronoun in the subject form "I" and the possessive form "my," but not the object form "me." I recommend picking up an NLP textbook like "Speech and Language Processing" by Jurafsky and Martin (for the ambitious), or just reading the one of the engineering-centered books about NLP tools such as LingPipe for Java, NLTK for Python, etc., to get a good overview of the terminology, the steps in an NLP pipeline, etc.
There is no built-in NLP capability in Apache Spark. You would have to implement it for yourself, perhaps based on a non-distributed NLP library, as described in marekinfo's excellent answer.
I would suggest you to take a look in spark's ml pipeline. You may not get everything out of the box yet, but you can build your capabililties and use pipeline as a framework..
Related
I'm reading and writings some text files in Scala. As a complete beginner in the language, I wanted to make sure to find the right way to do it, e.g. get the encoding right.
So most of the stuff I found (also on SO ) recommends I use io.Source.fromFile.However, after trying it out like so, reading a UTF-8 file:
val user_list = Source.fromFile("usernames.txt").getLines.toList
val user_list = Source.fromFile("usernames.txt", enc="UTF8").getLines.toList
I looked at the docs but was left with some questions.
Get the encoding right:
the docs show that I can set an encoding in Source.fromFile as I tried above. Looking at the man on Codec and the types listed there, I was wondering if those are all my codec options - is there e.g. no Utf-16, Big-Endian vs Little-Endian, etc.?
I am slightly obsessed with this since it used to trip me up in Python a lot. Is this less of concern with Scala for some reason?
Get the reading in right:
All the examples I looked at used the getLines method and postprocessed it with MkString or List, etc. Is there any advantage to that over just reading in the entire file (my files are small) in one go?
Get the writing out right:
Every source I could find tells me that Scala has no file writing function and to use the Java FileWriter. I was surprised by this - is this still accurate?
Looking at it I feel the question might be a little broad for SO, so I'd be happy to take it back if it does not meet the requirements. At this point, I'm not struggling with specific examples but rather trying to set things up in a way I don't get in trouble later.
Thanks!
Scala only has a basic IO api in the standard library. For the most part you just use the java apis. The fact that a decent api from java exists is probably why the Scala team is not prioritizing having a robust and fully featured IO api.
There are also third party scala libraries you could use as well however. Better Files I've never used but heard good things about as a Scala file api. As well as fs2 which provides functional, streaming IO. I'm sure there are others out there as well.
For encoding, there are many possible encoding available. It's just that only a couple of the most common ones are available as static fields, the rest you typically access through Codec("Encoding Name"). Most apis will also let you just enter a String directly instead of needing to get a Codec instance first. The codec is really just a wrapper over java.nio.charset.Charset. You can run java.nio.charset.Charset.availableCharsets() to see all of the encodings available on your system.
As far as reading, if the files are small you can load them fully into memory if you prefer that. The only reason not to do so is if you want to avoid the extra memory use of loading the entire file at once if reading through line by line is enough. You may want to use Vector instead of List for efficiency reasons (Vector is better in many cases and should probably be preferred as a default collection, but tradition and old habits die hard and most people/guides seem to default to List, but this is a whole other topic)
In The Pragmatic Programmer:
Normally, you can simply hide a third-party product behind a
well-defined, abstract interface. In fact , we've always been able to
do so on any project we've worked on. But suppose you couldn't isolate
it that cleanly. What if you had to sprinkle certain statements
liberally throughout the code? Put that requirement in metadata, and
use some automatic mechanism, such as Aspects (see page 39 ) or Perl,
to insert the necessary statements into the code itself.
Here the author is referring to Aspect Oriented Programming and Perl as tools that support "automatic mechanisms" for inserting metadata.
In my mind I envision some type of run-time injection of code. How does Perl allow for "automatic mechanisms" for inserting metadata?
Skip ahead to the section on Code Generators. The author provides a number of examples of processing input files to generate code, including this one:
Another example of melding environments using code generators happens when different programming languages are used in the same application. In order to communicate, each code base will need some information in commondata structures, message formats, and field names, for example. Rather than duplicate this information, use a code generator. Sometimes you can parse the information out of the source files of one language and use it to generate code in a second language. Often, though, it is simpler to express it in a simpler, language-neutral representation and generate the code for both languages, as shown in Figure 3.4 on the following page. Also see the answer to Exercise 13 on page 286 for an example of how to separate the parsing of the flat file representation from code generation.
The answer to Exercise 13 is a set of Perl programs used to generate C and Pascal data structures from a common input file.
Does anyone know of any examples of code written in prolog to implement a DSL to generate perl code?
DCGs might be an excellent choice!
I have used a similar approach for generation of UML class diagrams (really, graphviz code for such diagrams) from simple English sentences (shameless-plug: paper here). It should be possible to do something similar with generation of Perl code instead.
In the paper above, we use a constraint store (CHR) as intermediate representation which allows some extra reasoning power. Alternatively you can build a representation as an output feature/argument of the DCG.
Note that DCGs can be useful both for the parsing of your sentences and the generation of your Perl code.
Well, not exactly what you are asking for, but maybe you can use AI::Prolog for what you are looking for. That way you may be able to use Perl and generate the Perl code you want.
I'm not sure why you would want to do that?
Perl is a very expressive language, I'm not sure why you'd want to try to generate Perl code from Prolog; in order to make it useful, you'd be getting closer and closer to Perl in your "DSL", by which point you'd be better off just writing some Perl, surely?
I think you need to expand this question a bit to cover what you're trying to achieve in a little more detail.
SWI-Prolog library(http/html_write) library builds on DCG a DSL for page layout.
It shows a well tought model for integrating Prolog and HTML, but doesn't attempt to cover the entire problem. The 'residual logic' on the client side remains underspecified, but this is reasonable, being oriented on practical issues 'reporting' from RDF.
Thus the 'small detail' client interaction logic is handled in a 'black box' fashion, and such demanded to YUI components in the published application (the award winner Cliopatria).
The library it's extensible, but being very detailed, I guess for your task you should eventually reuse just the ideas behind.
I've managed to finally build and run pocketsphinx (pocketsphinx_continuous). The problem I'm running into, is how to a improve accuracy. From what I understand, you can specify a dictionary file (-dict test.dic). So I took the default dictionary file and added some more pronunciations of the same words, for example:
pencil P EH N S AH L
pencil(2) P EH N S IH L
spaghetti S P AH G EH T IY
spaghetti(2) S P UH G EH T IY
Yet pocketsphinx still does not recognize either word at all. I know there is a jsgf file you can specify as well , but that seems more for phrases and grammar. How can I get pocketsphinx to recognize common words such as pencil and spaghetti?
thanks
-Mike
With something like this, you can't be certain, but I can offer the following suggestions:
Perhaps the language model somehow has low probabilities for "spaghetti" and "pencil". As you suggested, you could use a JSGF to test out how it does for recognition if it doesn't use the N-gram models, but instead does a simple grammar (give it like twenty words, including spaghetti and pencil). This way you can see if it is perhaps the language model which makes it difficult to recognize these words, and it can do okay if it considers all the words to have equal probability.
Perhaps you simply pronounce these words poorly, even with the alternative dictionary entries. Try either A. Testing other peoples' voices, or B. Adapting the acoustic model to your voice (see http://cmusphinx.sourceforge.net/wiki/tutorialam)
Also, what is it recognizing them as when it is failing? If possible, remove the words it misrecognizes as from the dictionary.
Again, for overall accuracy, only three things are going to really help you: restricting the grammar, adapting the accoustic model, and perhaps getting higher quality recording input.
To improve accuracy you may want to try adapting the acoustic model to your voice.
http://cmusphinx.sourceforge.net/wiki/tutorialadapt
To learn how to add new words: http://ghatage.com/tech/2012/12/13/Make-Pocketsphinx-recognize-new-words/
Make sure you put a tab (not a space) after the word and before the start of the pronunciation.
May be the problem is with Pocketsphinx. I too was not getting good results with Pocketsphinx. But I was getting very good accuracy with Sphinx4 (for a US speaker with a noise-cancelling microphone.) Therefore I did a comparison between the two using the same audio recordings. For pocketsphinx I used pocketsphinx_batch with the WSJ audio model and a small vocabulary language model and dictionary (created online with the CMU Cambridge language modelling toolkit.) For Sphinx4 I wrote a small Java program using the Sphinx4 library. The result was that Sphinx4 was much more accurate. All the gory details are at http://www.jaivox.com/pocketsphinx.html.
To achieve good accuracy with a pocketshinx:
Important! Check that your mic, audio device, file supports 16 kHz while the general model is trained with 16 kHz acoustic examples.
You should create your own limited dictionary you cannot use cmusphinx-voxforge-de.dic while accuracy is dramatically dropped.
You should create your own language model.
You can search for Jasper project on GitLab to see how it's implemented.
Also, please check the documentation
This is on the CMUSphinx website
"There are various phonesets to represent phones, such as IPA or SAMPA. CMUSphinx does not yet require you to use any well-known phoneset, moreover, it prefers to use letter-only phone names without special symbols. This requirement simplifies some processing algorithms, for example, you can create files with phone names as part of the filenames without any violating of the OS filename requirements.
A dictionary should contain all the words you are interested in, otherwise the recognizer will not be able to recognize them. However, it is not sufficient to have the words in the dictionary. The recognizer looks for a word in both the dictionary and the language model. Without the language model, a word will not be recognized, even if it is present in the dictionary."
https://cmusphinx.github.io/wiki/tutorialdict/
I'm curious if anyone understands, knows or can point me to comprehensive literature or source code on how Google created their popular passage blocks feature. However, if you know of any other application that can do the same please post your answer too.
If you do not know what I am writing about here is a link to an example of Popular Passages. When you look at the overview of the book Modelling the legal decision process for information technology applications ... By Georgios N. Yannopoulos you can see something like:
Popular passages
... direction, indeterminate. We have
not settled, because we have not
anticipated, the question which will
be raised by the unenvisaged case when
it occurs; whether some degree of
peace in the park is to be sacrificed
to, or defended against, those
children whose pleasure or interest it
is to use these things. When the
unenvisaged case does arise, we
confront the issues at stake and can
then settle the question by choosing
between the competing interests in the
way which best satisfies us. In
doing... Page 86
Appears in 15 books from 1968-2003
This would be a world fit for
"mechanical" jurisprudence. Plainly
this world is not our world; human
legislators can have no such knowledge
of all the possible combinations of
circumstances which the future may
bring. This inability to anticipate
brings with it a relative
indeterminacy of aim. When we are bold
enough to frame some general rule of
conduct (eg, a rule that no vehicle
may be taken into the park), the
language used in this context fixes
necessary conditions which anything
must satisfy... Page 86
Appears in 8 books from 1968-2000
more
It must be an intensive pattern matching process. I can only think of n-gram models, text corpus, automatic plagisrism detection. But, sometimes n-grams are probabilistic models for predicting the next item in a sequence and text corpus (to my knowledge) are manually created. And, in this particular case, popular passages, there can be a great deal of words.
I am really lost. If I wanted to create such a feature, how or where should I start? Also, include in your response what programming languages are best suited for this stuff: F# or any other functional lang, PERL, Python, Java... (I am becoming a F# fan myself)
PS: can someone include the tag automatic-plagiarism-detection, because i can't
Read this ACM paper by Kolak and Schilit, the Google researchers who developed Popular Passages. There are also a few relevant slides from this MapReduce course taught by Baldridge and Lease at The University of Texas at Austin.
In the small sample I looked over, it looks like all the passages picked were inline or block quotes. Just a guess, but perhaps Google Books looks for quote marks/differences in formatting and a citation, then uses a parsed version of the bibliography to associate the quote with the source. Hooray for style manuals.
This approach is obviously of no help to detect plagiarism, and is of little help if the corpus isn't in a format that preserves text formatting.
If you know which books are citing or referencing other books you don't need to look at all possible books only the books that are citing each other. If is is scientific reference often line and page numbers are included with the quote or can be found in the bibliography at the end of the book, so maybe google parses only this informations?
Google scholar certainly has the information about citing from paper to paper maybe from book to book too.