Shape Detection Using Hough Transform in Matlab - matlab

I'm using a Properly working Matlab code (The original code is from here) that uses Hough trnsform to detect basic shapes like round, square and triangle.Here below is the important code segment.
[H, theta,rho]=hough(S);
Above H is the Hough transform matrix and S is the Black and White image of the shape.
for cnt = 1:max(max(H))
data(cnt) = sum(sum(H == cnt));
end
Here is the shape detection part.
[maxval,maxind] = max(data);
medval = median(data);
[p]=polyfit(1:maxind-5,data(1:maxind-5),2);
if maxval<3*medval
set(handles.txtResult,'string','Triangle');
elseif p(3)>100
set(handles.txtResult,'string','Square');
else
set(handles.txtResult,'string','Round');
end
I can understand the "data"(which stores Hough Matrix intensity frequencies). I just can't understand the logic it uses to detect the shape. maxval<3*medval and p(3)>100

Related

Compute binary line thickness in normal direction

I would like to kindly ask you for the help with the definition of the line thickness. I have the binary curve. I need to find out a distance of each point of the curve skeleton to line edge in the direction of the normal. So, I firstly computed skeleton of the binary curve. Consequently, for each pixel of the skeleton I computed normal. This situation is depicted on the figure, showing the skeleton and a map of normal vectors from each pixel. In this point, I do not know how to compute the distance for each skeleton pixel to curve edge in the normal direction. Practically, I need to count number of the pixels (logical 1) from the skeleton pixels to the line edge in the normal direction. It means I need to obtain the vector, containing distance for each skeleton point. I would like to thank you in advance for your help.
Code for generating skeleton with normals:
clc;clear all;close all
i=rgb2gray(imread('Bin_Lines.bmp'));
BW=bwskel(logical(i));
% BW = image sceleton
Orientations = skeletonOrientation(BW,5); %5x5 box
Onormal = Orientations+90; %easier to view normals
Onr = sind(Onormal); %vv
Onc = cosd(Onormal); %uu
[r,c] = find(BW); %row/cols
idx = find(BW); %Linear indices into Onr/Onc
figure()
imshow(BW,[]);
%Plotting normals of binary skeleton
hold on
quiver(c,r,-Onc(idx),Onr(idx));
Here is the link where I store source codes and binary line image:
https://www.dropbox.com/sh/j84ep3k1604hsza/AABm92TUBX6yIp29Gc0v_PHHa?dl=0
You can use distance transform to compute the distance of each interior pixel to the boundary. Matlab has bwdist to do that for you.
Then you can extract the information for the skeleton pixels.
img = rgb2gray(imread('Bin_Lines.bmp'));
bw = bwskel(img > 128);
dst = bwdist(img <= 128); % need opposite contrast
distance_of_skel_pixels_to_boundary = dst(bw)
The distance dst looks like:

Matlab - rotate a card [duplicate]

This question already has answers here:
How to straighten a tilted square shape in an image?
(2 answers)
Closed 5 years ago.
I have a cropped image of a card:
The card is a rectangle with rounded corners, is brightly colored, and sits on a relatively dark background.
It is, therefore, easy to differentiate between pixels belonging to the card and pixels belonging to the background.
I want to use MATLAB to rotate the card so its sides are vertical and horizontal (and not diagonal) and create an image of nothing but the straightened card.
I need this to work for any reasonable card angle (say +45 to -45 degrees of initial card rotation).
What would be the best way of doing this?
Thanks!
You can do this by finding the lines made by the edges of the card. The angle of rotation is then the angle between one of the lines and the horizontal (or vertical).
In MATLAB, you can use the Hough line detector to find lines in a binary image.
0. Read the input image
I downloaded your image and renamed it card.png.
A = imread('card.png');
We don't need color information, so convert to grayscale.
I = rgb2gray(A);
1. Detect edges in the image
A simple way is to use the Canny edge detector. Adjust the threshold to reject noise and weak edges.
BW = edge(I, 'canny', 0.5);
Display the detected edges.
figure
imshow(BW)
title('Canny edges')
2. Use the Hough line detector
First, you need to use the Hough transform on the black and white image, with the hough function. Adjust the resolution so that you detect all lines you need later.
[H,T,R] = hough(BW, 'RhoResolution', 2);
Second, find the strongest lines in the image by finding peaks in the Hough transform with houghpeaks.
P = houghpeaks(H, 100); % detect a maximum of 100 lines
Third, detect lines with houghlines.
lines = houghlines(BW, T, R, P);
Display the detected lines to make sure you find at least one along the edge of the card. The white border around the black background in your image makes detecting the right edges a bit more difficult.
figure
imshow(A)
hold on
for k = 1:length(lines)
xy = [lines(k).point1; lines(k).point2];
plot(xy(:,1), xy(:,2), 'LineWidth', 2, 'Color', 'red');
end
title('Detected lines')
3. Calculate the angle of rotation
lines(3) is the left vertical edge of the card. lines(3).point2 is the end of the line that is at the bottom. We want this point to stay where it is, but we want to vector along the line to be aligned with the vector v = [0 -1]'. (The origin is the top-left corner of the image, x is horizontal to the right and y is vertical down.)
lines(3)
ans =
struct with fields:
point1: [179 50]
point2: [86 455]
theta: 13
rho: 184
Simply calculate the angle between the vector u = lines(3).point1 - lines(3).point2 and the vertical vector v.
u = lines(3).point1 - lines(3).point2; % vector along the vertical left edge.
v = [0 -1]; % vector along the vertical, oriented up.
theta = acos( u*v' / (norm(u) * norm(v)) );
The angle is in radians.
4. Rotate
The imrotate function lets you rotate an image by specifying an angle in degrees. You could also use imwarp with a rotation transform.
B = imrotate(A, theta * 180 / pi);
Display the rotated image.
figure
imshow(B)
title('Rotated image')
Then you would have to crop it.

Calibration of images to obtain a top-view for points that lie on a same plane

Calibration:
I have calibrated the camera using this vision toolbox in Matlab. I used checkerboard images to do so. After calibration I get the cameraParams
which contains:
Camera Extrinsics
RotationMatrices: [3x3x18 double]
TranslationVectors: [18x3 double]
and
Camera Intrinsics
IntrinsicMatrix: [3x3 double]
FocalLength: [1.0446e+03 1.0428e+03]
PrincipalPoint: [604.1474 359.7477]
Skew: 3.5436
Aim:
I have recorded trajectories of some objects in motion using this camera. Each object corresponds to a single point in a frame. Now, I want to project the points such that I get a top-view.
Note all these points I wish to transform are are the on the same plane.
ex: [xcor_i,ycor_i ]
-101.7000 -77.4040
-102.4200 -77.4040
KEYPOINT: This plane is perpendicular to one of images of checkerboard used for calibration. For that image(below), I know the height of origin of the checkerboard of from ground(193.040 cm). And the plane to project the points on is parallel to the ground and perpendicular to this image.
Code
(Ref:https://stackoverflow.com/a/27260492/3646408 and answer by #Dima below):
function generate_homographic_matrix()
%% Calibrate camera
% Define images to process
path=['.' filesep 'Images' filesep];
list_imgs=dir([path '*.jpg']);
list_imgs_path=strcat(path,{list_imgs.name});
% Detect checkerboards in images
[imagePoints, boardSize, imagesUsed] = detectCheckerboardPoints(list_imgs_path);
imageFileNames = list_imgs_path(imagesUsed);
% Generate world coordinates of the corners of the squares
squareSize = 27; % in units of 'mm'
worldPoints = generateCheckerboardPoints(boardSize, squareSize);
% Calibrate the camera
[cameraParams, imagesUsed, estimationErrors] = estimateCameraParameters(imagePoints, worldPoints, ...
'EstimateSkew', true, 'EstimateTangentialDistortion', true, ...
'NumRadialDistortionCoefficients', 3, 'WorldUnits', 'mm');
%% Compute homography for peripendicular plane to checkerboard
% Detect the checkerboard
im=imread(['.' filesep 'Images' filesep 'exp_19.jpg']); %exp_19.jpg is the checkerboard orthogonal to the floor
[imagePoints, boardSize] = detectCheckerboardPoints(im);
% Compute rotation and translation of the camera.
[Rc, Tc] = extrinsics(imagePoints, worldPoints, cameraParams);
% Rc(rotation of the calibration view w.r.t the camera) = [x y z])
%then the floor has rotation Rf = [z x -y].(Normal vector of the floor goes up.)
Rf=[Rc(:,3),Rc(:,1),Rc(:,2)*-1];
% Translate it to the floor
H=452;%distance btw origin and floor
Fc = Rc * [0; H; 0];
Tc = Tc + Fc';
% Combine rotation and translation into one matrix:
Rf(3, :) = Tc;
% Compute the homography between the checkerboard and the image plane:
H = Rf * cameraParams.IntrinsicMatrix;
save('homographic_matrix.mat','H')
end
%% Transform points
function [x_transf,y_transf] =transform_points(xcor_i,ycor_i)
% creates a projective2D object and then transforms the points forward to
% get a top-view
% xcor_i and ycor_i are 1d vectors comprising of the x-coordinates and
% y-coordinates of trajectories.
data=load('homographic_matrix.mat');
homo_matrix=data.H;
tform=projective2d(inv(homo_matrix));
[x_transf,y_transf] = transformPointsForward(tform,xcor_i,ycor_i);
end
Quoting text from OReilly Learning OpenCV Pg 412:
"Once we have the homography matrix and the height parameter set as we wish, we could
then remove the chessboard and drive the cart around, making a bird’s-eye view video
of the path..."
This what I essentially wish to achieve.
Abhishek,
I don't entirely understand what you are trying to do. Are your points on a plane, and are you trying to create a bird's eye view of that plane?
If so, then you need to know the extrinsics, R and t, describing the relationship between that plane and the camera. One way to get R and t is to place a checkerboard on the plane, and then use the extrinsics function.
After that, you can follow the directions in the question you cited to get the homography. Once you have the homography, you can create a projective2D object, and use its transformPointsForward method to transform your points.
Since you have the size of squares on the grid, then given 2 points that you know are connected by an edge of size E (in real world units), you can calculate their 3D position.
Taking the camera intrinsic matrix K and the 3D position C and the camera orientation matrix R, you can calculate a ray to each of the points p by doing:
D = R^T * K^-1 * p
Each 3D point is defined as:
P = C + t*D
and you have the constraint that ||P1-P2|| = E
then it's a matter of solving for t1,t2 and finding the 3D position of the two points.
In order to create a top view, you can take the 3D points and project them using a camera model for that top view to generate a new image.
If all your points are on a single plane, it's enough to calculate the position of 3 points, and you can extrapolate the rest.
If your points are located on a plane that you know one coordinate of, you can do it simply for each point. For example, if you know that your camera is located at height h=C.z, and you want to find the 3D location of points in the frame, given that they are on the floor (z=0), then all you have to do is calculate the direction D as above, and then:
t=abs( (h-0)/D.z )
The 0 represent the height of the plane. Substitute for any other value for other planes.
Now that you have the value of t, you can calculate the 3D position of each point: P=C+t*D.
Then, to create a top view, create a new camera position and rotation to match your required projection, and you can project each point onto this camera's image plane.
If you want a full image, you can interpolate positions and fill in the blanks where no feature point was present.
For more details, you can always read: http://www.robots.ox.ac.uk/~vgg/hzbook/index.html

Circle detection via Hough Transform

I am writing a matlab code that takes in a photo and detects the circular object. After using some filters, I got below image.
To detect circular object(it is not a perfect circle), I tried to apply Hough Transform passing different values of radius and threshold, but it couldn't detect properly. Why this happens? Is it about shape of object or background of image?
Also is it possible to detect same object at the following image using Hough Transform?
Edge of circular object seems by human eye, but I am not sure that background can be eliminated from image completely via Hough Transform.
You can use imfindcircles in the Image Processing Toolbox. Using morphology to fill in the circle and cranking up sensitivity may help:
im = imread('pattern.jpg');
im2 = rgb2gray(im(100:end-100, 100:end-100, :));
im3 = im2bw(im2, 0.1);
im4 = imclose(im3, strel('disk', 4, 4));
im5 = imfill(im4, 'holes');
imshow(im5);
[centers, radii] = imfindcircles(im5, [180, 200], 'Sensitivity', .99);
viscircles(centers, radii);

How to measure the rotation of a image in MATLAB?

I have two images. One is the original, and the another is rotated.
Now, I need to discover the angle that the image was rotated. Until now, I thought about discovering the centroids of each color (as every image I will use has squares with colors in it) and use it to discover how much the image was rotated, but I failed.
I'm using this to discover the centroids and the color in the higher square in the image:
i = rgb2gray(img);
bw = im2bw(i,0.01);
s = regionprops(bw,'Centroid');
centroids = cat(1, s.Centroid);
colors = impixel(img,centroids(1),centroids(2));
top = max(centroids);
topcolor = impixel(img,top(1),top(2));
You can detect the corners of one of the colored rectangles in both the image and the rotated version, and use these as control points to infer the transformation between the two images (like in image registration) using the CP2TFORM function. We can then compute the angle of rotation from the affine transformation matrix:
Here is an example code:
%# read first image (indexed color image)
[I1 map1] = imread('http://i.stack.imgur.com/LwuW3.png');
%# constructed rotated image
deg = -15;
I2 = imrotate(I1, deg, 'bilinear', 'crop');
%# find blue rectangle
BW1 = (I1==2);
BW2 = imrotate(BW1, deg, 'bilinear', 'crop');
%# detect corners in both
p1 = corner(BW1, 'QualityLevel',0.5);
p2 = corner(BW2, 'QualityLevel',0.5);
%# sort corners coordinates in a consistent way (counter-clockwise)
p1 = sortrows(p1,[2 1]);
p2 = sortrows(p2,[2 1]);
idx = convhull(p1(:,1), p1(:,2)); p1 = p1(idx(1:end-1),:);
idx = convhull(p2(:,1), p2(:,2)); p2 = p2(idx(1:end-1),:);
%# make sure we have the same number of corner points
sz = min(size(p1,1),size(p2,1));
p1 = p1(1:sz,:); p2 = p2(1:sz,:);
%# infer transformation from corner points
t = cp2tform(p2,p1,'nonreflective similarity'); %# 'affine'
%# rotate image to match the other
II2 = imtransform(I2, t, 'XData',[1 size(I1,2)], 'YData',[1 size(I1,1)]);
%# recover affine transformation params (translation, rotation, scale)
ss = t.tdata.Tinv(2,1);
sc = t.tdata.Tinv(1,1);
tx = t.tdata.Tinv(3,1);
ty = t.tdata.Tinv(3,2);
translation = [tx ty];
scale = sqrt(ss*ss + sc*sc);
rotation = atan2(ss,sc)*180/pi;
%# plot the results
subplot(311), imshow(I1,map1), title('I1')
hold on, plot(p1(:,1),p1(:,2),'go')
subplot(312), imshow(I2,map1), title('I2')
hold on, plot(p2(:,1),p2(:,2),'go')
subplot(313), imshow(II2,map1)
title(sprintf('recovered angle = %g',rotation))
If you can identify a color corresponding to only one component it is easier to:
Calculate the centroids for each image
Calculate the mean of the centroids (in x and y) for each image. This is the "center" of each image
Get the red component color centroid (in your example) for each image
Subtract the mean of the centroids for each image from the red component color centroid for each image
Calculate the ArcTan2 for each of the vectors calculated in 4), and subtract the angles. That is your result.
If you have more than one figure of each color, you need to calculate all possible combinations for the rotation and then select the one that is compatible with the other possible rotations.
I could post the code in Mathematica, if you think it is useful.
I would take a variant to the above mentioned approach:
% Crude binarization method to knock out background and retain foreground
% features. Note one looses the cube in the middle
im = im > 1
Then I would get the 2D autocorrelation:
acf = normxcorr2(im, im);
From this result, one can easily detect the peaks, and as rotation carries into the autocorrelation function (ACF) domain, one can ascertain the rotation by matching the peaks between the original ACF and the ACF from the rotated image, for example using the so-called Hungarian algorithm.