How to measure the rotation of a image in MATLAB? - matlab

I have two images. One is the original, and the another is rotated.
Now, I need to discover the angle that the image was rotated. Until now, I thought about discovering the centroids of each color (as every image I will use has squares with colors in it) and use it to discover how much the image was rotated, but I failed.
I'm using this to discover the centroids and the color in the higher square in the image:
i = rgb2gray(img);
bw = im2bw(i,0.01);
s = regionprops(bw,'Centroid');
centroids = cat(1, s.Centroid);
colors = impixel(img,centroids(1),centroids(2));
top = max(centroids);
topcolor = impixel(img,top(1),top(2));

You can detect the corners of one of the colored rectangles in both the image and the rotated version, and use these as control points to infer the transformation between the two images (like in image registration) using the CP2TFORM function. We can then compute the angle of rotation from the affine transformation matrix:
Here is an example code:
%# read first image (indexed color image)
[I1 map1] = imread('http://i.stack.imgur.com/LwuW3.png');
%# constructed rotated image
deg = -15;
I2 = imrotate(I1, deg, 'bilinear', 'crop');
%# find blue rectangle
BW1 = (I1==2);
BW2 = imrotate(BW1, deg, 'bilinear', 'crop');
%# detect corners in both
p1 = corner(BW1, 'QualityLevel',0.5);
p2 = corner(BW2, 'QualityLevel',0.5);
%# sort corners coordinates in a consistent way (counter-clockwise)
p1 = sortrows(p1,[2 1]);
p2 = sortrows(p2,[2 1]);
idx = convhull(p1(:,1), p1(:,2)); p1 = p1(idx(1:end-1),:);
idx = convhull(p2(:,1), p2(:,2)); p2 = p2(idx(1:end-1),:);
%# make sure we have the same number of corner points
sz = min(size(p1,1),size(p2,1));
p1 = p1(1:sz,:); p2 = p2(1:sz,:);
%# infer transformation from corner points
t = cp2tform(p2,p1,'nonreflective similarity'); %# 'affine'
%# rotate image to match the other
II2 = imtransform(I2, t, 'XData',[1 size(I1,2)], 'YData',[1 size(I1,1)]);
%# recover affine transformation params (translation, rotation, scale)
ss = t.tdata.Tinv(2,1);
sc = t.tdata.Tinv(1,1);
tx = t.tdata.Tinv(3,1);
ty = t.tdata.Tinv(3,2);
translation = [tx ty];
scale = sqrt(ss*ss + sc*sc);
rotation = atan2(ss,sc)*180/pi;
%# plot the results
subplot(311), imshow(I1,map1), title('I1')
hold on, plot(p1(:,1),p1(:,2),'go')
subplot(312), imshow(I2,map1), title('I2')
hold on, plot(p2(:,1),p2(:,2),'go')
subplot(313), imshow(II2,map1)
title(sprintf('recovered angle = %g',rotation))

If you can identify a color corresponding to only one component it is easier to:
Calculate the centroids for each image
Calculate the mean of the centroids (in x and y) for each image. This is the "center" of each image
Get the red component color centroid (in your example) for each image
Subtract the mean of the centroids for each image from the red component color centroid for each image
Calculate the ArcTan2 for each of the vectors calculated in 4), and subtract the angles. That is your result.
If you have more than one figure of each color, you need to calculate all possible combinations for the rotation and then select the one that is compatible with the other possible rotations.
I could post the code in Mathematica, if you think it is useful.

I would take a variant to the above mentioned approach:
% Crude binarization method to knock out background and retain foreground
% features. Note one looses the cube in the middle
im = im > 1
Then I would get the 2D autocorrelation:
acf = normxcorr2(im, im);
From this result, one can easily detect the peaks, and as rotation carries into the autocorrelation function (ACF) domain, one can ascertain the rotation by matching the peaks between the original ACF and the ACF from the rotated image, for example using the so-called Hungarian algorithm.

Related

How can I draw the rectangle including the surfPoints object on the image?

I have a grayscale image I want to extract the regions of interest using detectSURFFeatures(). Using this function I get a surfPoints object.
by displaying this object on the image I get circles as regions of interest.
For my case I want the rectangular areas encompassing these circles.
To be more clear i have a image 1:
I want to extract Region of Interest (ROI) using : detectSURFFeatures(), we obtain the image
if you can see we have circular region, and for my case i want the rectangular ROI that contains the circular region :
It looks like the radius is fully determined by the points.Scale parameter.
% Detection of the SURF features:
I = imread('cameraman.tif');
points = detectSURFFeatures(I);
imshow(I); hold on;
% Select and plot the 10 strongest features
p = points.selectStrongest(10)
plot(p);
% Here we add the bounding box around the circle.
c = 6; % Correction factor for the radius
for ii = 1:10
x = p.Location(ii,1); % x coordinate of the circle's center
y = p.Location(ii,2); % y coordinate of the circle's center
r = p.Scale(ii); % Scale parameter
rectangle('Position',[x-r*c y-r*c 2*r*c 2*r*c],'EdgeColor','r')
end
And we obtain the following result:
In this example the correction factor for the radius is 6. I guess that this value correspond to half of the default Scale propertie's value of a SURFPoints object (which is 12.0). But since there is no information about that in the documentation, I can be wrong. And be carreful, the scale parameter of each ROI is not the same thing as the scale propertie of a SURFPoints object.

Quantifying pixels from a list of coordinates

I have a list of coordinates, which are generated from another program, and I have an image.
I'd like to load those coordinates (making circular regions of interest (ROIs) with a diameter of 3 pixels) onto my image, and extract the intensity of those pixels.
I can load/impose the coordinates on to the image by using;
imshow(file);
hold on
scatter(xCoords, yCoords, 'g')
But can not extract the intensity.
Can you guys point me in the right direction?
I am not sure what you mean by a circle with 3 pixels diameter since you are in a square grid (as mentioned by Ander Biguri). But you could use fspecial to create a disk filter and then normalize. Something like this:
r = 1.5; % for diameter = 3
h = fspecial('disk', r);
h = h/h(ceil(r),ceil(r));
You can use it as a mask to get the intensities at the given region of the image.
im = imread(file);
ROI = im(xCoord-1:xCoord+1; yCoord-1:yCoord+1);
I = ROI.*h;

matlab will two different cameras give me different results?

the next code gets an image of a grape that I photograph (is called: 'full_img') and calculate the area of the grape:
RGB = imread(full_img);
GRAY = rgb2gray(RGB);
threshold = graythresh(GRAY);
originalImage = im2bw(GRAY, threshold);
originalImage = bwareaopen(originalImage,250);
SE = strel('disk',10);
IM2 = imclose(originalImage,SE);
originalImage = IM2;
labeledImage = bwlabel(originalImage, 8); % Label each blob so we can make measurements of it
blobMeasurements = regionprops(labeledImage, originalImage, 'all');
numberOfBlobs = length(blobMeasurements);
pixperinch=get(0,'ScreenPixelsPerInch'); %# find resolution of your display
dpix=blobMeasurements(numberOfBlobs).Area; %# calculate distance in pixels
dinch=dpix/pixperinch; %# convert to inches from pixels
dcm=dinch*2.54; %# convert to cm from inches
blobArea = dcm; % Get area.
If I photograph the same grape with the same conditions by different cameras (photographed it from the same distance and the same lightning), will I get the same results? (what if I have a camera of 5 Mega Pixel and 12 Mega Pixel?).
No, it won't. You go from image coordinates to world coordinates using dpix/pixperinch. In general this is wrong. It will only work for a specific image (and that alone), if you know the pixperinch. In order to get the geometric characteristics of an object in an image (eg length, area etc), you must back-project the image pixels in the Cartesian space using the Camera matrix and the inverse projective transformation, in order to get Cartesian coordinates (let along calibrating the camera for lens distortion, which is a nonlinear problem). Then, you can perform the calculations. You code won't work even for the same camera.
See this for more.

OpenCV MATLAB: How to draw a line having a particular Intensity profile?

Below is an arbitrary hand-drawn Intensity profile of a line in an image:
The task is to draw the line. The profile can be approximated to an arc of a circle or ellipse.
This I am doing for camera calibration. Since I do not have the actual industrial camera, I am trying to simulate the correction needed for calibration.
The question can be rephrased as I want pixel values which will follow a plot similar to the above. I want to do this using program (Preferably using opencv) and not manually enter these values because I have thousands of pixels in the line.
An algorithm/pseudo code will suffice. Also please note that I do not have any actual Intensity profile, otherwise I would have read those values.
When will you encounter such situation ?
Suppose you take a picture (assuming complete white) from a Camera, your object being placed on table, and camera just above it in vertical direction. The light coming on the center of the picture vertically downward from the camera will be stronger in intensity as compared to the light reflecting at the edges. You measure pixel values across any line in the Image, you will find intensity curve like shown above. Since I dont have camera for the time being, I want to emulate this situation. How to achieve this?
This is not exactly image processing, rather image generation... but anyways.
Since you want an arc, we still need three points on that arc, lets take the first, middle and last point (key characteristics in my opinion):
N = 100; % number of pixels
x1 = 1;
x2 = floor(N/2);
x3 = N;
y1 = 242;
y2 = 255;
y3 = 242;
and now draw a circle arc that contains these points.
This problem is already discussed here for matlab: http://www.mathworks.nl/matlabcentral/newsreader/view_thread/297070
x21 = x2-x1; y21 = y2-y1;
x31 = x3-x1; y31 = y3-y1;
h21 = x21^2+y21^2; h31 = x31^2+y31^2;
d = 2*(x21*y31-x31*y21);
a = x1+(h21*y31-h31*y21)/d; % circle center x
b = y1-(h21*x31-h31*x21)/d; % circle center y
r = sqrt(h21*h31*((x3-x2)^2+(y3-y2)^2))/abs(d); % circle radius
If you assume the middle value is always larger (and thus it's the upper part of the circle you'll have to plot), you can draw this with:
x = x1:x3;
y = b+sqrt(r^2-(x-a).^ 2);
plot(x,y);
you can adjust the visible window with
xlim([1 N]);
ylim([200 260]);
which gives me the following result:

Stretching an ellipse in an image to form a circle

I want to stretch an elliptical object in an image until it forms a circle. My program currently inputs an image with an elliptical object (eg. coin at an angle), thresholds and binarizes it, isolates the region of interest using edge-detect/bwboundaries(), and performs regionprops() to calculate major/minor axis lengths.
Essentially, I want to use the 'MajorAxisLength' as the diameter and stretch the object on the minor axis to form a circle. Any suggestions on how I should approach this would be greatly appreciated. I have appended some code for your perusal (unfortunately I don't have enough reputation to upload an image, the binarized image looks like a white ellipse on a black background).
EDIT: I'd also like to apply this technique to the gray-scale version of the image, to examine what the stretch looks like.
code snippet:
rgbImage = imread(fullFileName);
redChannel = rgbImage(:, :, 1);
binaryImage = redChannel < 90;
labeledImage = bwlabel(binaryImage);
area_measurements = regionprops(labeledImage,'Area');
allAreas = [area_measurements.Area];
biggestBlobIndex = find(allAreas == max(allAreas));
keeperBlobsImage = ismember(labeledImage, biggestBlobIndex);
measurements = regionprops(keeperBlobsImage,'Area','MajorAxisLength','MinorAxisLength')
You know the diameter of the circle and you know the center is the location where the major and minor axes intersect. Thus, just compute the radius r from the diameter, and for every pixel in your image, check to see if that pixel's Euclidean distance from the cirlce's center is less than r. If so, color the pixel white. Otherwise, leave it alone.
[M,N] = size(redChannel);
new_image = zeros(M,N);
for ii=1:M
for jj=1:N
if( sqrt((jj-center_x)^2 + (ii-center_y)^2) <= radius )
new_image(ii,jj) = 1.0;
end
end
end
This can probably be optimzed by using the meshgrid function combined with logical indices to avoid the loops.
I finally managed to figure out the transform required thanks to a lot of help on the matlab forums. I thought I'd post it here, in case anyone else needed it.
stats = regionprops(keeperBlobsImage, 'MajorAxisLength','MinorAxisLength','Centroid','Orientation');
alpha = pi/180 * stats(1).Orientation;
Q = [cos(alpha), -sin(alpha); sin(alpha), cos(alpha)];
x0 = stats(1).Centroid.';
a = stats(1).MajorAxisLength;
b = stats(1).MinorAxisLength;
S = diag([1, a/b]);
C = Q*S*Q';
d = (eye(2) - C)*x0;
tform = maketform('affine', [C d; 0 0 1]');
Im2 = imtransform(redChannel, tform);
subplot(2, 3, 5);
imshow(Im2);