I have been looking for a solution all morning but could not really find anything I could use in a production environment.
The final goal is, given a mongo collection, get the N oldest messages, and apply an update to them. This is not easily doable, things like
db.coll.update({}, {$set: {status: 'UPDATED'}}).limit(N)
do not work.
So keeping in mind I want to update these N documents (or the whole collection if it has less than N documents), I was thinking about sorting the documents by creation date, getting the Nth one, and updating all documents $lte _id(N). (with y beautiful pseudo-code).
Thing is, I can't seem to be able to find an efficient way to do this. First I tried stuff like:
db.coll.find().sort(_id: 1).limit(N).sort(_id: -1).limit(1)
to then realize that having two sort in the same command was useless...
This works:
db.coll.find().limit(N).skip(N-1).next()
but has two big drawbacks:
I have to be sure beforehand that I have at least N documents (which is not that big an issue in my case but...)
.skip() is known to be CPU intensive because it actually go through the whole cursor. Although in my case N should not be greater than 1M, still not a good thing, when what I want is really the last document of the cursor.
So I guess my question is, assuming me trying to use the creation date to do this is the right way, how can I either:
get the Nth document inserted in my collection (under some criteria)
how to get the last record of my cursor (db.coll.find().limit(N))
Thank you a lot!!
Alexis
PS: If that makes any difference, we are actually coding in Java for this.
Using map-reduce you can achieve almost the desired result.
The map and reduce functions are trivial:
map = function() {
this.value.status = 'UPDATED';
emit(this._id, this.value)
}
reduce = function(key, values) {
// XXX should log an error if we reach that point
return {unexpectedReduce: values}
}
The trick is to use the merge output action of mapReduce (as well as limit, sort and query to select only the required input documents):
db.test.mapReduce(map, reduce,
{ query: {"value.status": {$ne: 'UPDATED'}},
sort: { _id: 1 },
limit: 10,
out: {merge: 'test'},
}
)
But, there is a but: you have to store the document in you collection as {_id: ... , value: { field1: ..., field2: ..., ... }} as this is the only output format currently supported by mapReduce jobs.
Here is a sample test collection I used when writing this answer:
> for(i = 0; i < 100; ++i) {
db.test.insert({value:{field1: i, field2: "hello"+i}}); sleep(500);
}
(BTW, note that I use ObjectID to identify older documents as the 4 most significant bytes are seconds since the Unix epoch)
Running the above map-reduce jobs will update the collection by batch of 10 older non-updated records:
> db.test.mapReduce(map, reduce,
{ query: {"value.status": {$ne: 'UPDATED'}},
sort: { _id: 1 },
limit: 10,
out: {merge: 'test'},
}
)
> db.test.find()
{ "_id" : ObjectId("556cd4d00027c9fdf8af809f"), "value" : { "field1" : 96, "field2" : "hello96" } }
{ "_id" : ObjectId("556cd4d00027c9fdf8af80a0"), "value" : { "field1" : 97, "field2" : "hello97" } }
{ "_id" : ObjectId("556cd4d10027c9fdf8af80a1"), "value" : { "field1" : 98, "field2" : "hello98" } }
{ "_id" : ObjectId("556cd4d10027c9fdf8af80a2"), "value" : { "field1" : 99, "field2" : "hello99" } }
{ "_id" : ObjectId("556cd49f0027c9fdf8af803f"), "value" : { "field1" : 0, "field2" : "hello0", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a00027c9fdf8af8040"), "value" : { "field1" : 1, "field2" : "hello1", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a00027c9fdf8af8041"), "value" : { "field1" : 2, "field2" : "hello2", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a10027c9fdf8af8042"), "value" : { "field1" : 3, "field2" : "hello3", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a10027c9fdf8af8043"), "value" : { "field1" : 4, "field2" : "hello4", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a20027c9fdf8af8044"), "value" : { "field1" : 5, "field2" : "hello5", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a20027c9fdf8af8045"), "value" : { "field1" : 6, "field2" : "hello6", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a30027c9fdf8af8046"), "value" : { "field1" : 7, "field2" : "hello7", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a30027c9fdf8af8047"), "value" : { "field1" : 8, "field2" : "hello8", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a40027c9fdf8af8048"), "value" : { "field1" : 9, "field2" : "hello9", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a40027c9fdf8af8049"), "value" : { "field1" : 10, "field2" : "hello10" } }
...
Scroll right to see the updated status in the above and below code blocks
And running the same mapReduce job again:
{ "_id" : ObjectId("556cd4d00027c9fdf8af809f"), "value" : { "field1" : 96, "field2" : "hello96" } }
{ "_id" : ObjectId("556cd4d00027c9fdf8af80a0"), "value" : { "field1" : 97, "field2" : "hello97" } }
{ "_id" : ObjectId("556cd4d10027c9fdf8af80a1"), "value" : { "field1" : 98, "field2" : "hello98" } }
{ "_id" : ObjectId("556cd4d10027c9fdf8af80a2"), "value" : { "field1" : 99, "field2" : "hello99" } }
{ "_id" : ObjectId("556cd49f0027c9fdf8af803f"), "value" : { "field1" : 0, "field2" : "hello0", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a00027c9fdf8af8040"), "value" : { "field1" : 1, "field2" : "hello1", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a00027c9fdf8af8041"), "value" : { "field1" : 2, "field2" : "hello2", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a10027c9fdf8af8042"), "value" : { "field1" : 3, "field2" : "hello3", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a10027c9fdf8af8043"), "value" : { "field1" : 4, "field2" : "hello4", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a20027c9fdf8af8044"), "value" : { "field1" : 5, "field2" : "hello5", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a20027c9fdf8af8045"), "value" : { "field1" : 6, "field2" : "hello6", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a30027c9fdf8af8046"), "value" : { "field1" : 7, "field2" : "hello7", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a30027c9fdf8af8047"), "value" : { "field1" : 8, "field2" : "hello8", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a40027c9fdf8af8048"), "value" : { "field1" : 9, "field2" : "hello9", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a40027c9fdf8af8049"), "value" : { "field1" : 10, "field2" : "hello10", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a50027c9fdf8af804a"), "value" : { "field1" : 11, "field2" : "hello11", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a50027c9fdf8af804b"), "value" : { "field1" : 12, "field2" : "hello12", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a60027c9fdf8af804c"), "value" : { "field1" : 13, "field2" : "hello13", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a60027c9fdf8af804d"), "value" : { "field1" : 14, "field2" : "hello14", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a70027c9fdf8af804e"), "value" : { "field1" : 15, "field2" : "hello15", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a70027c9fdf8af804f"), "value" : { "field1" : 16, "field2" : "hello16", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a80027c9fdf8af8050"), "value" : { "field1" : 17, "field2" : "hello17", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a80027c9fdf8af8051"), "value" : { "field1" : 18, "field2" : "hello18", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a90027c9fdf8af8052"), "value" : { "field1" : 19, "field2" : "hello19", "status" : "UPDATED" } }
{ "_id" : ObjectId("556cd4a90027c9fdf8af8053"), "value" : { "field1" : 20, "field2" : "hello20" } }
{ "_id" : ObjectId("556cd4aa0027c9fdf8af8054"), "value" : { "field1" : 21, "field2" : "hello21" } }
...
Related
I have a document looking like this:
{
"_id" : ObjectId("5f60ffc5aefd067a9ff9345c"),
"_class" : "com.kalsym.smart.sms.data.MSASMS",
"number1" : NumberLong(923211105469),
"numbers2" : [
{
"field1" : "20200915532E888",
"number2" : NumberLong(923018565627),
"field2" : "abcd",
"datefield" : ISODate("2020-10-10T17:54:09.886Z")
},
{
"field1" : "2020092570A6948",
"number2" : NumberLong(923018565627),
"field2" : "efgh",
"datefield" : ISODate("2020-10-06T15:23:04.891Z")
},
{
"field1" : "2020092570A6948",
"number2" : NumberLong(923018565627),
"field2" : "ijkl",
"datefield" : ISODate("2020-10-03T15:23:04.891Z")
}
],
"optInCount" : 0
}
I want to delete array indices containing datefield value greater than 2020-10-04
After executing the command document must be updated like this:
{
"_id" : ObjectId("5f60ffc5aefd067a9ff9345c"),
"_class" : "com.kalsym.smart.sms.data.MSASMS",
"number1" : NumberLong(923211105469),
"numbers2" : [
{
"field1" : "2020092570A6948",
"number2" : NumberLong(923018565627),
"field2" : "ijkl",
"datefield" : ISODate("2020-10-03T15:23:04.891Z")
}
],
"optInCount" : 0
}
You can use updateMany() or update(), and $pull to remove matching record form array,
db.collection.updateMany({},
{
$pull: {
numbers2: { datefield: { $gt: ISODate("2020-10-04T00:00:00.000Z") } }
}
})
Playground
I have been looking for a way to do that but couldn't find any.
I'd like to know if is possible to, from a given query, return all fields that are contained in that query.
For example my dataset is as follows:
{ "_id" : ObjectId("5d5c2b4cc1f74ace3a48a072"), "id" : 0, "term" : "shorts" }
{ "_id" : ObjectId("5d5c2b4cc1f74ace3a48a072"), "id" : 0, "term" : "jacket" }
{ "_id" : ObjectId("5d5c2b4cc1f74ace3a48a072"), "id" : 1, "term" : "yellow jacket" }
{ "_id" : ObjectId("5d5c2b56c1f74ace3a48a073"), "id" : 2, "term" : "blue jacket" }
{ "_id" : ObjectId("5d5c2b65c1f74ace3a48a074"), "id" : 3, "term" : "blue shorts" }
{ "_id" : ObjectId("5d5c2b71c1f74ace3a48a075"), "id" : 4, "term" : "red shorts" }
And now, given a text like: "I really love blue shorts", the return should be only:
{ "_id" : ObjectId("5d5c2b71c1f74ace3a48a075"), "id" : 3, "term" : "blue shorts" }
{ "_id" : ObjectId("5d5c2b4cc1f74ace3a48a072"), "id" : 0, "term" : "shorts" }
It's something like query.contains(field)
Using $where is generally discouraged in mongodb because of
javascript execution in the query system and can be slow.
You can try this out if the dataset is not very large. Its like doing reverse regex for the field value contained in the query.
db.collection.find({$where: "\""I really love blue shorts\".match(this.term)"});
Which outputs:
{ "_id" : ObjectId("5d5c32c1236f19364a8aad4d"), "id" : 0, "term" : "shorts"}
{ "_id" : ObjectId("5d5c32c1236f19364a8aad51"), "id" : 3, "term" : "blue shorts"}
NOTE: This takes the assumption that term is defined in the documents, else you can use a javascript function for the $where value to deal with edge cases such as not defined fields, etc.
{ $where: function() { return /* after edge cases dealt with*/ }
The following query can get us the expected output:
db.collection.aggregate([
{
$addFields:{
"searchString":"I really love blue shorts"
}
},
{
$match:{
$expr:{
$gt:[
{
$indexOfBytes:["$searchString","$term"]
},
-1
]
}
}
},
{
$project:{
"searchString":0
}
}
]).pretty()
Data set:
{
"_id" : ObjectId("5d5c2b4cc1f74ace3a48a070"),
"id" : 0,
"term" : "shorts"
}
{
"_id" : ObjectId("5d5c2b4cc1f74ace3a48a071"),
"id" : 0,
"term" : "jacket"
}
{
"_id" : ObjectId("5d5c2b4cc1f74ace3a48a072"),
"id" : 1,
"term" : "yellow jacket"
}
{
"_id" : ObjectId("5d5c2b56c1f74ace3a48a073"),
"id" : 2,
"term" : "blue jacket"
}
{
"_id" : ObjectId("5d5c2b65c1f74ace3a48a074"),
"id" : 3,
"term" : "blue shorts"
}
{
"_id" : ObjectId("5d5c2b71c1f74ace3a48a075"),
"id" : 4,
"term" : "red shorts"
}
Output:
{
"_id" : ObjectId("5d5c2b4cc1f74ace3a48a070"),
"id" : 0,
"term" : "shorts"
}
{
"_id" : ObjectId("5d5c2b65c1f74ace3a48a074"),
"id" : 3,
"term" : "blue shorts"
}
Hi I have below mongodb collection
{
"_id" : ObjectId("53ce993639203f573671d3f5"),
"user_id" : NumberLong(51),
"buses" : [
{
"slot_id" : NumberLong(50),
"status" : NumberLong(3),
"bus_id" : NumberLong(8)
},
{
"slot_id" : NumberLong(67),
"status" : NumberLong(3),
"bus_id" : NumberLong(12)
}
]
}
i want to pull sub array where bus_id=8.
Final result i want to be like this
{
"_id" : ObjectId("53ce993639203f573671d3f5"),
"user_id" : NumberLong(51),
"buses" : [
{
"slot_id" : NumberLong(67),
"status" : NumberLong(3),
"bus_id" : NumberLong(12)
}
]
}
When i tried with below query
db.collectionname.update({},{$pull: {buses: {bus_id:8}}},{multi: true})
I got below error in console,
Cannot apply $pull/$pullAll modifier to non-array
Can any one please suggest me how to achieve this,and also need php mongodb query also.
Thanks in Advance
Worked fine for me for your sample document:
> db.bus.findOne()
{
"_id" : ObjectId("53ce993639203f573671d3f5"),
"user_id" : NumberLong(51),
"buses" : [
{
"slot_id" : NumberLong(50),
"status" : NumberLong(3),
"bus_id" : NumberLong(8)
},
{
"slot_id" : NumberLong(67),
"status" : NumberLong(3),
"bus_id" : NumberLong(12)
}
]
}
> db.bus.update({}, { "$pull" : { "buses" : { "bus_id" : 8 } } }, { "multi" : true })
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
> db.bus.findOne()
{
"_id" : ObjectId("53ce993639203f573671d3f5"),
"user_id" : NumberLong(51),
"buses" : [
{
"slot_id" : NumberLong(67),
"status" : NumberLong(3),
"bus_id" : NumberLong(12)
}
]
}
The cause of the problem is that some buses element is not an array. What does the query
> db.bus.find({ "buses.0" : { "$exists" : 0}, "buses" : { "$ne" : [] } })
return? This query finds documents where there is no 0th element of the array and the array is not empty, so it should return documents where buses is not an array.
I have a collection:
{ "name" : "A", "value" : 1, "date" : ISODate("2014-01-01T00:00:00.000Z") }
{ "name" : "B", "value" : 7, "date" : ISODate("2014-01-01T00:00:00.000Z") }
{ "name" : "A", "value" : 3, "date" : ISODate("2014-01-02T00:00:00.000Z") }
{ "name" : "B", "value" : 8, "date" : ISODate("2014-01-02T00:00:00.000Z") }
{ "name" : "B", "value" : 8, "date" : ISODate("2014-01-03T00:00:00.000Z") }
{ "name" : "A", "value" : 5, "date" : ISODate("2014-01-04T00:00:00.000Z") }
{ "name" : "A", "value" : 4, "date" : ISODate("2014-01-05T00:00:00.000Z") }
The document for A on 3rd Jan 2014 is not available. When I do a find/aggregate on A, I would like the document to appear in my result set with a default value (or better, value to be same as previous date). For example:
{ "name" : "A", "value" : 1, "date" : ISODate("2014-01-01T00:00:00.000Z") }
{ "name" : "A", "value" : 3, "date" : ISODate("2014-01-02T00:00:00.000Z") }
{ "name" : "A", "value" : 3 (or default value -1), "date" : ISODate("2014-01-03T00:00:00.000Z") }
{ "name" : "A", "value" : 5, "date" : ISODate("2014-01-04T00:00:00.000Z") }
{ "name" : "A", "value" : 4, "date" : ISODate("2014-01-05T00:00:00.000Z") }
How can this be done?
One thing you need in order to be able to do this in aggregation framework is an array of dates that you want your report to cover. For example, for input that you show, you might have an array:
days = [ ISODate("2014-01-01T00:00:00Z"), ISODate("2014-01-02T00:00:00Z"),
ISODate("2014-01-03T00:00:00Z"), ISODate("2014-01-04T00:00:00Z"),
ISODate("2014-01-05T00:00:00Z"), ISODate("2014-01-06T00:00:00Z") ];
to indicate that you want every one of these six days represented.
Here is the aggregation that you would run:
db.coll.aggregate( [
{$group : {_id:{name:"$name",date:"$date"},value:{$sum:"$value"}}},
{$group : {_id:"$_id.name", days:{$addToSet:"$_id.date"},docs:{$push:"$$ROOT"}}},
{$project : {missingDays:{$setDifference:[days,"$days"]},docs:1}},
{$unwind : "$missingDays"},
{$unwind : "$docs"},
{$group : {
_id:"$_id",
days:{$addToSet:{date:"$docs._id.date",value:"$docs.value"}},
missingDays:{$addToSet:{date:"$missingDays",value:{$literal:0}}}
} },
{$project : {_id:0, name:"$_id", date:{$setUnion:["$days","$missingDays"]}}},
{$unwind : "$date"},
{$sort : {date:1,name:1}}
] )
On your sample input with days defined as above it outputs:
{ "name" : "A", "date" : { "date" : ISODate("2014-01-01T00:00:00Z"), "value" : 1 } }
{ "name" : "A", "date" : { "date" : ISODate("2014-01-02T00:00:00Z"), "value" : 3 } }
{ "name" : "A", "date" : { "date" : ISODate("2014-01-03T00:00:00Z"), "value" : 0 } }
{ "name" : "A", "date" : { "date" : ISODate("2014-01-04T00:00:00Z"), "value" : 5 } }
{ "name" : "A", "date" : { "date" : ISODate("2014-01-05T00:00:00Z"), "value" : 4 } }
{ "name" : "A", "date" : { "date" : ISODate("2014-01-06T00:00:00Z"), "value" : 0 } }
{ "name" : "B", "date" : { "date" : ISODate("2014-01-01T00:00:00Z"), "value" : 7 } }
{ "name" : "B", "date" : { "date" : ISODate("2014-01-02T00:00:00Z"), "value" : 8 } }
{ "name" : "B", "date" : { "date" : ISODate("2014-01-03T00:00:00Z"), "value" : 8 } }
{ "name" : "B", "date" : { "date" : ISODate("2014-01-04T00:00:00Z"), "value" : 0 } }
{ "name" : "B", "date" : { "date" : ISODate("2014-01-05T00:00:00Z"), "value" : 0 } }
{ "name" : "B", "date" : { "date" : ISODate("2014-01-06T00:00:00Z"), "value" : 0 } }
The first group stage may not be necessary in your case - it's there in case there are multiple documents for the same name and date, in that case you want to add the values for them. The second $group and $project stage figure out the difference between the days present for each name and the array of days you want covered, creating missingDays which will be getting the value 0 in the next $group stage. That group stage creates for each name an array of dates that have data and array of missing dates that don't. It structures them the say way so that the following $project stage can create a union of them using the $setUnion operator. After that all that's left is to $unwind the array of dates and sort it whichever way you want.
the collection nodesWays has the following indexes:
> db.nodesWays.getIndexes()
[
{
"v" : 1,
"key" : {
"_id" : 1
},
"name" : "_id_",
"ns" : "h595.nodesWays"
},
{
"v" : 1,
"key" : {
"amenity" : 1,
"geo" : "2dsphere"
},
"name" : "amenity_1_geo_2dsphere",
"ns" : "h595.nodesWays",
"2dsphereIndexVersion" : 2
},
{
"v" : 1,
"key" : {
"geo" : "2dsphere"
},
"name" : "geo_2dsphere",
"ns" : "h595.nodesWays",
"2dsphereIndexVersion" : 2
}
]
Now the following two queries should return the same result, but they don't.
I want the nearest 10 restaurants to the specified point.
The first query is working how it should be, the second is not working like intended.
The only difference between these two queries is that the first one uses the geo_2dsphere-Index
and the second query the amenity_1_geo_2dsphere-Index.
> db.nodesWays.find(
{
geo:{
$nearSphere:{
$geometry:{
type: "Point", coordinates: [9.7399777,52.3715156]
}
}
}, "amenity":"restaurant",
name: {$exists: true}
}, {id:1, name:1}).hint( "geo_2dsphere" ).limit(10)
{ "_id" : ObjectId("53884860e552e471be2b7192"), "id" : "321256694", "name" : "Masa" }
{ "_id" : ObjectId("53884860e552e471be2b7495"), "id" : "323101271", "name" : "Bavarium" }
{ "_id" : ObjectId("53884862e552e471be2ba605"), "id" : "442496282", "name" : "Naxos" }
{ "_id" : ObjectId("53884860e552e471be2b7488"), "id" : "323101189", "name" : "Block House" }
{ "_id" : ObjectId("53884878e552e471be2d1a41"), "id" : "2453236451", "name" : "Maestro" }
{ "_id" : ObjectId("53884870e552e471be2c8aab"), "id" : "1992166428", "name" : "Weinstube Leonardo Ristorante" }
{ "_id" : ObjectId("53884869e552e471be2c168b"), "id" : "1440320284", "name" : "Altdeutsche küche" }
{ "_id" : ObjectId("53884861e552e471be2b88f7"), "id" : "353119010", "name" : "Mövenpick" }
{ "_id" : ObjectId("5388485de552e471be2b2c86"), "id" : "265546900", "name" : "Miles" }
{ "_id" : ObjectId("53884863e552e471be2bb5d3"), "id" : "532304135", "name" : "Globetrotter" }
> db.nodesWays.find(
{
geo:{
$nearSphere:{
$geometry:{
type: "Point", coordinates: [9.7399777,52.3715156]
}
}
}, "amenity":"restaurant",
name: {$exists: true}
}, {id:1, name:1}).hint( "amenity_1_geo_2dsphere" ).limit(10)
{ "_id" : ObjectId("53884875e552e471be2cf4a8"), "id" : "2110027373", "name" : "Schloßhof Salder" }
{ "_id" : ObjectId("5388485be552e471be2aff19"), "id" : "129985174", "name" : "Balkan Paradies" }
{ "_id" : ObjectId("5388485be552e471be2afeb4"), "id" : "129951134", "name" : "Asia Dragon" }
{ "_id" : ObjectId("53884863e552e471be2ba811"), "id" : "450130115", "name" : "Kings Palast" }
{ "_id" : ObjectId("53884863e552e471be2ba823"), "id" : "450130135", "name" : "Restaurant Montenegro" }
{ "_id" : ObjectId("53884877e552e471be2d053a"), "id" : "2298722569", "name" : "Pizzaria Da-Lucia" }
{ "_id" : ObjectId("53884869e552e471be2c152e"), "id" : "1420101752", "name" : "Napoli" }
{ "_id" : ObjectId("5388485be552e471be2b0028"), "id" : "136710095", "name" : "Europa" }
{ "_id" : ObjectId("53884862e552e471be2ba5bc"), "id" : "442136241", "name" : "Syrtaki" }
{ "_id" : ObjectId("53884863e552e471be2ba763"), "id" : "447972565", "name" : "Pamukkale" }
My goal with the second index is to:
select all restaurants
then use the nearSphere-Operator to sort them in regards to the distance from the specified point
Auf Wiedersehen
I think you should try to put the geolocation first in the index.