Matlab: how to sum fields of two equivalent structures? - matlab

I am working in Matlab. I have defined:
a(1).x=1;
a(1).y=2;
a(1).z.w=3;
a(2).x=4;
a(2).y=5;
a(2).z.w=6;
I am now trying to add the fields in the two structures a(1) and a(2) such that I get:
c.x = 5;
c.y = 7;
c.z.w = 9;
Any idea how I can do this in an elegant way? Note that in the original problem the structures have many more fields (around 50).
Thank you very much in advance!
José

Here is a solution, for any depth of struct
The code of the script (or MATLAB command)
a(1).x=1;
a(1).y=2;
a(1).z.w=3;
a(2).x=4;
a(2).y=5;
a(2).z.w=6;
c=a(1);
c = returnStruct(c, a(2));
%{
you can also sum any amount of structs
for i=2:length(a)
c=returnStruct(c, a(i));
end
%}
with the recursive function
function rs = returnStruct(s,a)
fn = fieldnames(s);
for i=1:length(fn)
if isstruct(s.(fn{i}))
s.(fn{i}) = returnStruct(s.(fn{i}), a.(fn{i}));
else
s.(fn{i}) = s.(fn{i})+a.(fn{i});
end
end
rs = s;
end
I tested it for deeper levels of structs and it worked perfectly. Maybe, you have to adapt it slightly for your case, but this should be the way to go.
Unfortunately, any function like struct2cell only converts the first level, so you need something else.

If the deepest substructure level is 2 then this code will work:
fields=fieldnames(a);
for i=1:numel(fields)
if isstruct(a(1).(fields{i}))
fields2=fieldnames(a(1).(fields{i}));
for j=1:numel(fields2)
a(3).(fields{i}).(fields2{j})= a(1).(fields{i}).(fields2{j})+a(2).(fields{i}).(fields2{j});
end
else
a(3).(fields{i})=a(1).(fields{i})+a(2).(fields{i});
end
end

You can have a simple recursive solution
function r = sumfields(s)
if isstruct(s)
for f = fieldnames(s).'
r.(f{1}) = sumfields([s.(f{1})]);
end
else
r = sum(s);
end
end

Related

Make the basis of a function from nest loop outer components

I have a segment of code where a composition of nested loops needs to be run at various times; however, each time the operations within the nested loops are different. Is there a way to make the outer portion (loop composition) somehow a functional piece, so that the internal operations are variable. For example, below, two code blocks are shown which both use the same loop introduction, but have different purposes. According to the principle of DRY, how can I improve this, so as not to need to repeat myself each time a similar loop needs to be used?
% BLOCK 1
for a = 0:max(aVec)
for p = find(aVec'==a)
iDval = iDauVec{p};
switch numel(iDval)
case 2
r = rEqVec(iDval);
qVec(iDval(1)) = qVec(p) * (r(2)^0.5 / (r(1)^0.5 + r(2)^0.5));
qVec(iDval(2)) = qVec(p) - qVec(iDval(1));
case 1
qVec(iDval) = qVec(p);
end
end
end
% BLOCK 2
for gen = 0:max(genVec)-1
for p = find(genVec'==gen)
iDval = iDauVec{p};
QinitVec(iDval) = QinitVec(p)/numel(iDval);
end
end
You can write your loop structure as a function, which takes a function handle as one of its inputs. Within the loop structure, you can call this function to carry out your operation.
It looks as if the code inside the loop needs the values of p and iDval, and needs to assign to different elements of a vector variable in the workspace. In that case a suitable function definition might be something like this:
function vec = applyFunctionInLoop(aVec, vec, iDauVec, funcToApply)
for a = 0:max(aVec)
for p = find(aVec'==a)
iDval = iDauVec{p};
vec = funcToApply(vec, iDval, p);
end
end
end
You would need to put the code for each different operation you want to carry out in this way into a function with suitable input and output arguments:
function qvec = myFunc1(qVec, iDval, p)
switch numel(iDval)
case 2
r = rEqVec(iDval); % see note
qVec(iDval(1)) = qVec(p) * (r(2)^0.5 / (r(1)^0.5 + r(2)^0.5));
qVec(iDval(2)) = qVec(p) - qVec(iDval(1));
case 1
qVec(iDval) = qVec(p);
end
end
function v = myFunc2(v, ix, q)
v(ix) = v(q)/numel(ix);
end
Now you can use your loop structure to apply each function:
qvec = applyFunctionInLoop(aVec, qVec, iDauVec, myFunc1);
QinitVec = applyFunctionInLoop(aVec, QinitVec, iDauVec, myFunc2);
and so on.
In most of the answer I've kept to the same variable names you used in your question, but in the definition of myFunc2 I've changed the names to emphasise that these variables are local to the function definition - the function is not operating on the variables you passed in to it, but on the values of those variables, which is why we have to pass the final value of the vector out again.
Note that if you want to use the values of other variables in your functions, such as rEqVec in myFunc1, you need to think about whether those variables will be available in the function's workspace. I recommend reading these help pages on the Mathworks site:
Share Data Between Workspaces
Dynamic Function Creation with Anonymous and Nested Functions

Function with different return variables

Is there a way to have one function that can return two different variables, but only one at a time AND knowing which one is returned in the function call?
example:
I have the following function in which only one of the outputs is valid (the other one would be [])
function [a,b] = AlternatingOutput (input)
if input == 1
return ONLY A
else
return ONLY B
end
end
and i call it in a script
[a,b] = AlternatingOutput (input)
i want a way to say the following (pseudocode):
if (function outputs a)
[a,~] = AlternatingOutput(input)
elseif (function outputs b)
[~,b] = AlternatingOutput(input)
end
the script is run in a loop, and later i need the newest Valid values for a and b, so i cannot overwrite one of the two with []
I do understand that I could just write a function that checks which variable will be output, but I was wondering if there is a more elegant way.
I hope I have made my question clear, and I hope someone can answer me :)
There is no way to tell if an output argument is actually used. You may check the number of output arguments using nargout and it would allow to distinguish between [a] = AlternatingOutput(input) and [~,b] = AlternatingOutput(input)
I don't know the full context of your problem, but maybe you can put all your variables into a struct? Simply pass this struct everytime you call the function and let it decide which variables to manipulate. (This might be slow in some programming languages, but not in matlab).
How about retuning a cell?
function [ ab ] = testfun( input )
if input
ab={'ax'};
else
ab={2};
end
end
No worries about what is in the cell.
thb you could return what ever you want, Matlab does not check the type anyways
If only one of the outputs from the function AlternatingOutput is valid, then you only need to return one output:
function [X] = AlternatingOutput(input)
if input == 1
X = A;
else
X = B;
end
end
To allocate the retured value to either a or b in the loop, put them into a cell:
C = {AlternatingOutput(1), AlternatingOutput(2)};
and then use input to determine which value is change. If input is either 1 or 2 you can just do
for counter = ...
input = mod(input,2)+1;
C{input}=AlternatingOutput(input);
end
If your function doesn't mind accepting more input variables, why not pass a and b as input:
function [a,b] = AlternatingOutput(a,b,input)
if input == 1
a = new_value_for_a;
% b retains its former value
else
% a retains its former value
b = new_value_for_b;
end
end
Then it can be easily called from your script in a loop:
for i= ...
[a,b] = AlternatingOutput(a,b,input);
...
...
end

Matlab - Queue data structure

I am working on implementing queue data structures using cell arrays in Matlab. I am trying to write functions to advance the queue by one, as well as search the queue for a specific item. At the moment the function looks like this (car types are the example data).
function q = createQueue()
q={};
q = enqueue(q,'Hilux');
q = enqueue(q,'E-Type');
q = enqueue(q,'Beetle');
q = enqueue(q,'Enzo');
q = enqueue(q,'Boxter');
q = dequeue(q)
q = searchQueue(q,'Boxter')
end
% Adds an item to the end of the queue. Returns the new queue.
function q = enqueue(q,item)
q{end+1} = item;
end
function [q item] = dequeue(q)
q{1} = {};
q{1} = q{2};
q{2} = q{3};
q{3} = q{4};
q{4} = q{5};
q{5} = {};
end
function answer = searchQueue(q, item)
for i = 1:length(q)
if q{i} == item
answer = fprintf('FOUND AT INDEX %d',i);
break
else
disp('-1')
end
end
end
Currently, the dequeue function leaves an empty cell, rather than removing the cell entirely. Is this able to be avoided? The searchQueue function also returns an error, and i am lost as to why. Thanks
Here's a rough first cut at it using matlab's object oriented capabilities. The reason for creating a class is to get reference semantics from the handle type, which allows for the dequeue/enqueue functions to modify the cell array directly, removing the need for reassignment.
I believe the code example below answers your main question about how to dequeue without leaving an empty cell (could be used without the OOP approach to the same effect).
To answer your question about what's wrong with your search: 1) the comparison q{i} == item gives you problems because == compares characters (which fails if there is a string size mismatch) whereas you wanted to use isequal(); 2) you wanted sprintf rather than fprintf; and 3) while not strictly wrong, the else in your loop happens on every item that doesn't match, which is probably not what you wanted.
classdef Queue < handle
properties
data = {}
end
methods
function q = Queue()
% TODO: do something in constructor if desired
end
function item = dequeue(q)
% TODO: bounds check
item = q.data(1);
q.data = q.data(2:end);
end
function enqueue(q,item)
q.data{end+1} = item;
end
function answer = search(q, item)
% TODO: check for multiple occurrences
answer = 'NOT FOUND';
for i = 1:length(q.data)
if isequal(q.data{i},item)
answer = sprintf('FOUND AT INDEX %d',i);
break
end
end
end
end
end

Iterate through a lot of Structs

my Problem is the following:
I have about 300 Struct files given.
They are set up like this:
DSC_0001 has about 250 other struct files in it:
-> like this: DSC_0001.marker_1
And this one has 10 Numbers in it.
Like that:
DSC_0001.marker_1.flow_angle = 90
and now I want to iterate through all the Struct files
Something like that:
for i = 1:300
for j = 1:250
flow_angle = DSC_**i**.marker_**j**
end
end
Is there a way to do this?
I have the feeling that it could be really easy but I just can't find the solution...
I hope my question is clear enough...
Thanks for your help!
If possible don't use eval.
It depends on how your data is stored, but one possiblity is that it is in a .mat file. In that case it can be loaded using
DSC_structs = load('My_DSC_struct_file.mat');
and then you can access the values like so:
for i = 1:300
for j = 1:250
flow_angle(i,j) = DSC_structs.(['DSC_' sprintf('%04d',i)]).(['marker_' sprintf('%d',j)]);
end
end
Why avoid the eval function
Edit: You say that each struct is in a different file. That's a bit messier. I would probably do something like this to load them:
DSC_structs = cell(1,300);
for i = 1:300
%Note: I'm guess at your file names here
DSC_structs{i} = load(['DSC_' sprintf('%04d',i) '.mat'];
end
and then access the values as
DSC_structs{i}.(['DSC_' sprintf('%04d',i)]).(['marker_' sprintf('%d',j)]);
I guess this is a use case for the dreaded eval function:
for i = 1:300
for j = 1:250
eval (['flow_angle = DSC_', sprintf('%04d',i), '.marker_', num2str(j)]);
end
end
BUT NB there are 2 problems with my code above
You haven't told us where you want to store your angle, so my code doesn't :/ but you'd want something like this if you just want to store them in a matrix: eval (['flow_angle(', num2str(i), ',', num2str(j), ') = DSC_', sprintf('%04d',i), '.marker_', num2str(j)])
eval is a horrible way of doing things but you're forced to because someone saved your data in a horrible. Sort yourself out now for the future by re-saving your data in a smarter way! so something like:
.
for i = 1:300
eval ( ['DSC(', num2str(i), ') = DSC_', sprintf('%04d',i)]);
end
%// then save DCS!
And now your can iterate through this matrix of structs rather than having a 300 structs polluting your workspace and forcing you to use eval

What are some efficient ways to combine two structures in MATLAB?

I want to combine two structures with differing fields names.
For example, starting with:
A.field1 = 1;
A.field2 = 'a';
B.field3 = 2;
B.field4 = 'b';
I would like to have:
C.field1 = 1;
C.field2 = 'a';
C.field3 = 2;
C.field4 = 'b';
Is there a more efficient way than using "fieldnames" and a for loop?
EDIT: Let's assume that in the case of field name conflicts we give preference to A.
Without collisions, you can do
M = [fieldnames(A)' fieldnames(B)'; struct2cell(A)' struct2cell(B)'];
C=struct(M{:});
And this is reasonably efficient. However, struct errors on duplicate fieldnames, and pre-checking for them using unique kills performance to the point that a loop is better. But here's what it would look like:
M = [fieldnames(A)' fieldnames(B)'; struct2cell(A)' struct2cell(B)'];
[tmp, rows] = unique(M(1,:), 'last');
M=M(:, rows);
C=struct(M{:});
You might be able to make a hybrid solution by assuming no conflicts and using a try/catch around the call to struct to gracefully degrade to the conflict handling case.
Short answer: setstructfields (if you have the Signal Processing Toolbox).
The official solution is posted by Loren Shure on her MathWorks blog, and demonstrated by SCFrench here and in Eitan T's answer to a different question. However, if you have the Signal Processing Toolbox, a simple undocumented function does this already - setstructfields.
help setstructfields
setstructfields Set fields of a structure using another structure
setstructfields(STRUCTIN, NEWFIELDS) Set fields of STRUCTIN using
another structure NEWFIELDS fields. If fields exist in STRUCTIN
but not in NEWFIELDS, they will not be changed.
Internally it uses fieldnames and a for loop, so it is a convenience function with error checking and recursion for fields that are themselves structs.
Example
The "original" struct:
% struct with fields 'color' and 'count'
s = struct('color','orange','count',2)
s =
color: 'orange'
count: 2
A second struct containing a new value for 'count', and a new field, 'shape':
% struct with fields 'count' and 'shape'
s2 = struct('count',4,'shape','round')
s2 =
count: 4
shape: 'round'
Calling setstructfields:
>> s = setstructfields(s,s2)
s =
color: 'orange'
count: 4
shape: 'round'
The field 'count' is updated. The field 'shape' is added. The field 'color' remains unchanged.
NOTE: Since the function is undocumented, it may change or be removed at any time.
I have found a nice solution on File Exchange: catstruct.
Without testing the performance I can say that it did exactly what I wanted.
It can deal with duplicate fields of course.
Here is how it works:
a.f1 = 1;
a.f2 = 2;
b.f2 = 3;
b.f4 = 4;
s = catstruct(a,b)
Will give
s =
f1: 1
f2: 3
f3: 4
I don't think you can handle conflicts well w/o a loop, nor do I think you'd need to avoid one. (although I suppose efficiency could be an issue w/ many many fields...)
I use a function I wrote a few years back called setdefaults.m, which combines one structure with the values of another structure, where one takes precedence over the other in case of conflict.
% SETDEFAULTS sets the default structure values
% SOUT = SETDEFAULTS(S, SDEF) reproduces in S
% all the structure fields, and their values, that exist in
% SDEF that do not exist in S.
% SOUT = SETDEFAULTS(S, SDEF, OVERRIDE) does
% the same function as above, but if OVERRIDE is 1,
% it copies all fields of SDEF to SOUT.
function sout = setdefaults(s,sdef,override)
if (not(exist('override','var')))
override = 0;
end
sout = s;
for f = fieldnames(sdef)'
cf = char(f);
if (override | not(isfield(sout,cf)))
sout = setfield(sout,cf,getfield(sdef,cf));
end
end
Now that I think about it, I'm pretty sure that the "override" input is unnecessary (you can just switch the order of the inputs) though I'm not 100% sure of that... so here's a simpler rewrite (setdefaults2.m):
% SETDEFAULTS2 sets the default structure values
% SOUT = SETDEFAULTS(S, SDEF) reproduces in S
% all the structure fields, and their values, that exist in
% SDEF that do not exist in S.
function sout = setdefaults2(s,sdef)
sout = sdef;
for f = fieldnames(s)'
sout = setfield(sout,f{1},getfield(s,f{1}));
end
and some samples to test it:
>> S1 = struct('a',1,'b',2,'c',3);
>> S2 = struct('b',4,'c',5,'d',6);
>> setdefaults2(S1,S2)
ans =
b: 2
c: 3
d: 6
a: 1
>> setdefaults2(S2,S1)
ans =
a: 1
b: 4
c: 5
d: 6
In C, a struct can have another struct as one of it's members. While this isn't exactly the same as what you're asking, you could end up either with a situation where one struct contains another, or one struct contains two structs, both of which hold parts of the info that you wanted.
psuedocode: i don't remember the actual syntax.
A.field1 = 1;
A.field2 = 'a';
A.field3 = struct B;
to access:
A.field3.field4;
or something of the sort.
Or you could have struct C hold both an A and a B:
C.A = struct A;
C.B = struct B;
with access then something like
C.A.field1;
C.A.field2;
C.B.field3;
C.B.field4;
hope this helps!
EDIT: both of these solutions avoid naming collisions.
Also, I didn't see your matlab tag. By convention, you should want to edit the question to include that piece of info.