What is the definition of "feature" in neural network? - neural-network

I am a beginner of the neural network. I am very confused about the word feature. Can you give me a defintion of feature? Are the features the neurons in the hidden layers?

The features are the elements of your input vectors. The number of features is equal to the number of nodes in the input layer of the network.
If you were using a neural network to classify people as either men or women, the features would be things like height, weight, hair length etc. Each of these would have an initial value in meters, kilograms and so on, and would then be normalized and centered at zero (within-feature) prior to presentation to the system.
So this guy:
height: 1.5m
weight: 70kg
hair length: 0.1m
Would be initially represented by the vector [1.5, 70, 0.1] and then after preprocessing (there would have to be other items in the dataset...) by something like [-0.2, 0.4, .05]
The features of an image of a letter could be as simple as the greyscale values of pixels. Other features could be generated by processing the images and extracting parameters from power spectra, or finding edges, etc. To learn more about this, seek out information about image processing and feature extraction.

Features in a neural network are the variables or attributes in your data set. You usually pick a subset of variables that can be used as good predictors by your model. So in a neural network, the features would be the input layer, not the hidden layer nodes. The output is whatever variable (or variables) you're trying to predict.

Related

neural net width, depth

Judging by answers to questions related to width,depth of neural nets, selecting values is more an art than science. Nets are even built that build their own layer sizes on-the fly to avoid making choices.
Why?
Factors would be: input data width, output data width. Add complexity: each I and O would have disallowed states not possible with real world data sets. Usually very finite input and output data set sizes, though all real possibilites may not always be intuitive.
Couldn't a neural net be constructed to recommend more ideal layer widths and depths than just making guesses? This would seem to be a natural in an AI researcher's tools box.

How does a neural network produce an array?

Background
I've been studying Neural Networks, specifically the implmentation provided by this incredible online book. In the example network provided, we're shown how to create a neural network that classifies the MNIST training data to perform Optical Character Recognition (OCR).
The network is configured so that the input stimuli represents a discrete range of thresholded pixel data from a 24x24 image; at the output, we have ten signal paths which represent each of the different solutions for the input images; these are used classify a handwritten digit from zero to nine. In this implementation, a handwritten '3' would drive a strong signal down the third output path.
Now, I've seen that Neural Networks can be applied to far more 'unpredictable' output solutions; for example, take the team who taught a network to recognize the hair on a human:
Question
Surely in the application above, we couldn't use a fixed output array length because the number of points that would qualify within an image would vary just so wildly between different samples. Can anyone recommend what kind of pattern would have been used to accomplish this?
Assumption
In the interest of completeness, I'm going to propose that the team could have employed a kind of 'line following robot' for the classification task. So for an input image, a network could be trained by using a small range of discrete commands (LEFT, RIGHT, UP, DOWN) for a fixed period t and train the network to control the robot like an Etch-a-Sketch.
Alternatively, we could implement a network which would map pixels one-to-one, and define whether individual pixels contributed to hair; but this wouldn't be compatible with different image resolutions.
So, do either of these solutions sound plausable? If so, are these basic implementations of a known generic solution for this kind of problem? What approach would you use?

How to enforce feature vector representing label probability with Caffe siamese CNN?

related to How to Create CaffeDB training data for siamese networks out of image directory
If I have N labels. How can I enforce, that the feature vector of size N right before the contrastive loss layer represents some kind of probability for each class? Or comes that automatically with the siamese net design?
If you only use contrastive loss in a Siamese network, there is no way of forcing the net to classify into the correct label - because the net is only trained using "same/not same" information and does not know the semantics of the different classes.
What you can do is train with multiple loss layers.
You should aim at training a feature representation that is reach enough for your domain, so that looking at the trained feature vector of some input (in some high dimension) you should be able to easily classify that input to the correct class. Moreover, given that feature representation of two inputs one should be able to easily say if they are "same" or "not same".
Therefore, I recommend that you train your deep network with two loss layer with "bottom" as the output of one of the "InnerProduct" layers. One loss is the contrastive loss. The other loss should have another "InnerProduct" layer with num_output: N and a "SoftmaxWithLoss" layer.
A similar concept was used in this work:
Sun, Chen, Wang and Tang Deep Learning Face Representation by Joint Identification-Verification NIPS 2014.

Training data range for Neural Network

Is it better for Neural Network to use smaller range of training data or it does not matter? For example, if I want to train an ANN with angles (values of float) should I pass those values in degrees [0; 360] or in radians [0; 6.28] or maybe all values should be normalized to range [0; 1]? Does the range of training data affects ANN learing quality?
My Neural Network has 6 input neurons, 1 hidden layer and I am using sigmoid symmetric activation function (tanh).
For the neural network it doesn't matter whether the data is normalised.
However, the performance of the training method can vary a lot.
In a nutshell: typically the methods prefer variables which have larger values. This might send the training method off-track.
Crucial for most NN training methods is that all dimensions of the training data have the same domain. If all your variables are angles it doesn't matter, whether they are [0,1) or [0,2*pi) or [0,360) as long as they have the same domain. However, you should avoid having one variable for the angle [0,2*pi) and another variable for the distance in mm where distance can be much larger then 2000000mm.
Two cases where an algorithm might suffer in these cases:
(a) regularisation: if the weights of the NN are force to be small a tiny change of a weight controlling the input of a large domain variable has a much larger impact, than for a small domain
(b) gradient descent: if the step size is limited you have similar effects.
Recommendation: All variables should have the same domain size whether it is [0,1] or [0,2*pi] or ... doesn't matter.
Addition: for many domain "z-score normalisation" works extremely well.
The data points range affects the way you train a model. Suppose the range of values for features in the data set is not normalized. Then, depending on your data, you may end up having elongated Ellipses for the data points in the feature space and the learning model will have a very hard time learning the manifold on which the data points lie on (learn the underlying distribution). Also, in most cases the data points are sparsely spread in the feature space, if not normalized (see this). So, the take-home message is to normalize the features when possible.

Neural Network Input Bias in MATLAB

In Matlab (Neural Network Toolbox + Image Processing Toolbox), I have written a script to extract features from images and construct a "feature vector". My problem is that some features have more data than others. I don't want these features to have more significance than others with less data.
For example, I might have a feature vector made up of 9 elements:
hProjection = [12,45,19,10];
vProjection = [3,16,90,19];
area = 346;
featureVector = [hProjection, vProjection, area];
If I construct a Neural Network with featureVector as my input, the area only makes up 10% of the input data and is less significant.
I'm using a feed-forward back-propogation network with a tansig transfer function (pattern-recognition network).
How do I deal with this?
When you present your input data to the network, each column of your feature vector is fed to the input layer as an attribute by itself.
The only bias you have to worry about is the scale of each (ie: we usually normalize the features to the [0,1] range).
Also if you believe that the features are dependent/correlated, you might want to perform some kind of attribute selection technique. And in your case it depends one the meaning of the hProj/vProj features...
EDIT:
It just occurred to me that as an alternative to feature selection, you can use a dimensionality reduction technique (PCA/SVD, Factor Analysis, ICA, ...). For example, factor analysis can be used to extract a set of latent hidden variables upon which those hProj/vProj depends on. So instead of these 8 features, you can get 2 features such that the original 8 are a linear combination of the new two features (plus some error term). Refer to this page for a complete example