forwarding data from one source to another in real time - postgresql

I have a legacy system that is capable of inserting updating data from its database to remote RDBMS (using jdbc driver) in real time. I cannot change the code since I don't have it.
We are thinking of moving this data to nosql data source like cassandra.
I am thinking of deploying postgres in the middle and pushing it to cassandra or writing it to flat file. Since there are frequent updates I will have to store the data in two database. Is there any ETL process which can listen to sql queries (insert,update,delete) and forward it to different source?

One option would be to use bottled water to capture changes in postgresql and a create a consumer that would apply those changes to e.g. cassandra.

Related

Audit data changes with Debezium

I have a use case where I want to audit the DB table data changes into another table for compliance purposes. Primarily, any changes to the data like Inserts/Updates/Deletes should be audited. I found different options like JaVers, Hibernate Envers, Database triggers, and Debezium.
I am avoiding using JaVers, and Hibernate Envers as this will not capture any data change that happens through direct SQL queries and any data change that happens through other applications. The other issue I see is we need to add the audit-related code to the main application code in the same transaction boundary.
I am also avoiding the usage of database triggers as we are not using triggers at all for any of the deployments.
Then I left with Debezium which is promising. But, the only concern that I have is that we need to use Kafka to leverage Debezium. Is Kafka's usage is necessary to use Debezium if both the primary table and the audit table sit in the same DB instance?
Debezium is perfect for auditing, but given it is a source Connector, it represents just one part of the data pipeline in your use case. You will capture every table change event (c=create, r=read, u=update, d=delete), store it on a Kafka topic or local disk and then you need a Sink Connector (i.e. Camel Kafka SQL or JDBC, kafka-connect-jdbc) to insert into the target table.
For the same transaction boundary requirement you can use the Outbox Pattern if the eventual consistency is fine. There is also an Outbox Event Router SMT component that is part of the project.
Note that Debezium can also run embedded in a standalone Java application, storing the offset on local disk, but you lose the HA capability given by KafkaConnect running in distributed mode. With the embedded mode, you are also swtiching from a configuration-driven approach to a code-driven one.
I found Debezium to be a very comprehensive solution, and it is open source backed by Redhat. That gives it not only the credibility, but the security that it is going to be supported.
It provides a rich configuration to whitelist, blacklist databases/tables/columns (with wild card patterns), along with controls to limit data in really large columns.
Since it is driven from BinLogs, you not only get the current state, you also get the previous state. This is ideal for audit trails, and you can customize building a proper Sync to elastic topics (one for table).
Use of Kafka is necessary to account for HA and latency when bulk updates are made on DB, even though Primary and Audit tables are in same DB.

What value does Postgres adapter for spark/hadoop add?

I am not an HDFS nerd but coming from traditional RDMS background, I am scratching surface with newer technologies like Hadoop and Spark. Now, I was looking at my options when it comes to SQL querying on Spark data.
What I realized that Spark inherently supports SQL querying. Then I came across this link
https://www.enterprisedb.com/news/enterprisedb-announces-new-apache-spark-connecter-speed-postgres-big-data-processing
Which I am trying to make some sense of. If I am understanding it correctly. Data is still stored in HDFS format but Postgres connector is used as a query engine? If so, in presence of an existing querying framework, what new value does this postgress connector add?
Or I am misunderstanding what it actually does?
I think you are misunderstanding.
They allude to the concept of Foreign Data Wrapper.
"... They allow PostgreSQL queries to include structured or unstructured data, from multiple sources such as Postgres and NoSQL databases, as well as HDFS, as if they were in a single database. ...
"
This sounds to me like the Oracle Big Data Appliance approach. From Postgres you can look at the world of data processing it logically as though it is all Postgres, but underwater the HDFS data is accessed using Spark query engine invoked by the Postgres Query engine, but you need not concern yourself with that is the likely premise. We are in the domain of Virtualization. You can combine Big Data and Postgres data on the fly.
There is no such thing as Spark data as it is not a database as such barring some Spark fomatted data that is not compatible with Hive.
The value will be invariably be stated that you need not learn Big Data etc. Whether that is true remains to be seen.

Using Kafka for Data Integration with Updates & Deletes

So a little background - we have a large number of data sources ranging from RDBMS's to S3 files. We would like to synchronize and integrate this data with other various data warehouses, databases, etc.
At first, this seemed like the canonical model for Kafka. We would like to stream the data changes through Kafka to the data output sources. In our test case we are capturing the changes with Oracle Golden Gate and successfully pushing the changes to a Kafka queue. However, pushing these changes through to the data output source has proven challenging.
I realize that this would work very well if we were just adding new data to the Kafka topics and queues. We could cache the changes and write the changes to the various data output sources. However this is not the case. We will be updating, deleting, modifying partitions, etc. The logic for handling this seems to be much more complicated.
We tried using staging tables and joins to update/delete the data but I feel that would become quite unwieldy quickly.
This comes to my question - are there any different approaches we could go about handling these operations? Or should we totally move in a different direction?
Any suggestions/help is much appreciated. Thank you!
There are 3 approaches you can take:
Full dump load
Incremental dump load
Binlog replication
Full dump load
Periodically, dump your RDBMS data source table into a file, and load that into the datawarehouse, replacing the previous version. This approach is mostly useful for small tables, but is very simple to implement, and supports updates and deletes to the data easily.
Incremental dump load
Periodically, get the records that changed since your last query, and send them to be loaded to the data warehouse. Something along the lines of
SELECT *
FROM my_table
WHERE last_update > #{last_import}
This approach is slightly more complex to implement, because you have to maintain the state ("last_import" in the snippet above), and it does not support deletes. It can be extended to support deletes, but that makes it more complicated. Another disadvantage of this approach that it requires your tables to have a last_update column.
Binlog replication
Write a program that continuously listens to the binlog of your RDBMS and sends these updates to be loaded to an intermediate table in the data warehouse, containing the updated values of the row, and whether it is a delete operation or update/create. Then write a query that periodically consolidates these updates to create a table that mirrors the original table. The idea behind this consolidation process is to select, for each id, the last (most advanced) version as seen in all the updates, or in the previous version of the consolidated table.
This approach is slightly more complex to implement, but allows achieving high performance even on large tables and supports updates and deletes.
Kafka is relevant to this approach in that it can be used as a pipeline for the row updates between the binlog listener and the loading to the data warehouse intermediate table.
You can read more about these different replication approaches in this blog post.
Disclosure: I work in Alooma (a co-worker wrote the blog post linked above, and we provide data-pipelines as a service, solving problems like this).

tELTPostgresql* usage issue

I'm trying to use tELTPostgresqlOutput with postgres 9.3 server and this is the result:
With a simple tPostgresqlInput and a tLogRow it works perfectly.
This is not how to use the ELT components. These should be used to do in database server transformations such as creating a star schema table from multiple tables in the same database. This allows you to use the database to do the transformation and avoid reading the data into memory for your job. It's particularly useful when dealing with large datasets that can't be broken down for the transformation.
If you want to transfer data from one database server/vendor to another you will need to use ETL components (pretty much anything not explicitly marked ELT) to read data out of the source database and write it back to the target database.
In this case you should be using a tMSSQLInput component to read in the data you need, a tMap to transform the data in the way you want and a tPostgresqlOutput component to write the data out to the Postgres database.

HDFS to PostgreSQL

We need a process in place to pull data from Hadoop Distributed File System (HDFS) to a relational DB (PostgreSQL) on a regular basis. We will need to transfer several million records per hour and I am looking for the best industry standards to move data out of HDFS. Does any one have any suggestions?
The idea is for a web app to interact with PostgreSQL which will have aggregated data.
Sqoop is built for the purpose of moving data between relational data stores and Hadoop. Specifically, you want sqoop-export.