Optional Binding, Capturing References and Closures [possible bug] - swift

I have been trying to get myself acquainted with Swift, but I recently came across this peculiar problem involving Optional Bindings and capturing references within the context of Closures.
Given the following declarations (code abbreviated for clarity; full code provided at the end):
class Thing
{
func giveNameIfSize() -> String? {
/.../
}
}
typealias IterationBlock = (Thing) -> Bool
class Iterable
{
func iterate(block: IterationBlock) {
/.../
}
}
An Iterable object can store a collection of Things and can iterate through them using a closure. Now say we wanted to find the name of the Thing object that has a size property set up. We could do something like this:
var name: String?
iterable.iterate { (someThing) -> Bool in
/*
Assigning the result of the giveNameIfSize() function to
a variable 'name' declared outside of the closure and
captured by reference
*/
if name = someThing.giveNameIfSize() {
return true
}
return false
}
However, the code above generates the following compiler error:
Cannot assign to immutable value of type 'String?'
Curiously enough, the problem disappears when we use another variable in the optional binding:
iterable.iterate { (someThing) -> Bool in
if var tempResult = someThing.giveNameIfSize() {
name = tempResult
return true
}
return false
} /* COMPILES AND RUNS */
The problem is also resolved if we assign a value to the externally declared variable name outside of the optional binding:
iterable.iterate { (someThing) -> Bool in
name = someThing.giveNameIfSize()
if name != nil {
return true
}
return false
} /* ALSO COMPILES AND RUNS */
Full source code here.
Obs.: Tested this code with Swift 1.2, not 2.0.
====
Is this a bug? Or am I missing something?

The error you're receiving is a little misleading, but the underlying problem here is that you're trying to do something that Swift doesn't support. In Swift, you can't use the result of assignment in a condition.
That being said, both of your proposed alternative methods will work, although I tend to think that the first of the two is a little more Swifty.

Related

Swift: Creating array of objects with generic type parameter

I have a type called Setting that takes a generic type parameter as such:
Setting<T>
Every setting contains a value that can be an Int32, String, Bool, or a custom object type, etc. Here is some of the full implementation of Setting:
class Setting<T> {
var key:String?
var defaultValue:T?
//...
}
This all works with various type params as expected, however, now there is a requirement for a collection that contains multiple Setting objects that could have various type parameters. When I declare an array variable of type [Setting], obviously the compiler expects a type which is unknown at runtime.
I've tried using a protocol and an extension on the types that could be used for the generic type parameter such as this:
protocol SettingProtocol {
func getType() -> Self.Type
}
extension Int32:SettingProtocol {
func getType() -> Int32.Type {
return Int32.self
}
}
extension String:SettingProtocol {
func getType() -> String.Type {
return String.self
}
}
//...
and declaring my array as
var settings = [Setting<SettingProtocol>]()
but this does not work when I try to append a Setting instance to the array as follows:
var newSetting = Setting<String>()
newSetting.setDefaultValue(value: "SomeString")
settings?.append(newSetting) // compile error here
and results in the following compiler error:
Cannot convert value of type 'Setting<String>' to expected argument type 'Setting<SettingProtocol>'
Also, using the protocol/extension route might require an extension on every type that might be encountered when building these objects which seems really clunky.
I feel like there should be a way to accomplish this. Also hoping that when I pull these items out of the array that I can avoid a lot of type checking.
Can anyone offer any advice?
Change
class Setting<T>
to
class Setting<T:SettingProtocol>
and try compiling.
Actually, you can't define:
var settings = [Setting<SettingProtocol>]()
because the generic type of Setting must be one of the concrete types but not the protocol itself. For example, you could declare it as:
var settings = [Setting<String>]() // since you already implemented extension String:SettingProtocol { ...
Therefore you could append objects of type Setting<String>, however that's not what are you looking for, you need settings to be a heterogeneous container.
So what you could do is:
class Setting {
var key:String?
var defaultValue:SettingProtocol?
}
protocol SettingProtocol { }
extension Int32:SettingProtocol {}
extension String: SettingProtocol {}
At this point, you declared defaultValue to be of type SettingProtocol, without the need of dealing with a generic.
Therefore:
var newStringSetting = Setting()
newStringSetting.defaultValue = "My String"
settings.append(newStringSetting)
var newInt32Setting = Setting()
newInt32Setting.defaultValue = Int32(100)
settings.append(newInt32Setting)
for setting in settings {
print(setting.defaultValue)
// Optional("My String")
// Optional(100)
}

How to check if a Swift generic type is Void?

I have a class along these lines: class MyClass<Input> and I would like to check whether the Input type is Void or not inside its initializer.
I've tried a variety of things like trying to cast to Void (the Swift compiler allows it but tells me this always fails), or using is, but I'm missing something fundamental here.
How can I check whether the generic type is Void?
You can do this by comparing the .self values of the generic variable and Void. Here's a quick example that you can stick in a Swift playground to see it work!
import UIKit
class MyClass<T> {
init() {
if(T.self == Void.self) {
print("Void!")
} else {
print("Not Void!")
}
}
}
// Will print Not Void
var test = MyClass<Int>()
// Will print Void
var test2 = MyClass<Void>()

Swift - Take Nil as Argument in Generic Function with Optional Argument

I am trying to create a generic function that can take an optional argument.
Here's what I have so far:
func somethingGeneric<T>(input: T?) {
if (input != nil) {
print(input!);
}
}
somethingGeneric("Hello, World!") // Hello, World!
somethingGeneric(nil) // Errors!
It works with a String as shown, but not with nil.
Using it with nil gives the following two errors:
error: cannot invoke 'somethingGeneric' with an argument list of type '(_?)'
note: expected an argument list of type '(T?)'
What am I doing wrong and how should I correctly declare/use this function? Also, I want to keep the usage of the function as simple as possible (I don't want do something like nil as String?).
I guess the compiler can't figure out what T is just from nil.
The following works just fine though for example:
somethingGeneric(Optional<String>.None)
I believe you've overcomplicated the problem by requiring the ability to pass untyped nil (which doesn't really exist; even nil has a type). While the approach in your answer seems to work, it allows for the creation of ?? types due to Optional promotion. You often get lucky and that works, but I've seen it blow up in really frustrating ways and the wrong function is called. The problem is that String can be implicitly promoted to String? and String? can be implicitly promoted to String??. When ?? shows up implicitly, confusion almost always follows.
As MartinR points out, your approach is not very intuitive about which version gets called. UnsafePointer is also NilLiteralConvertible. So it's tricky to reason about which function will be called. "Tricky to reason about" makes it a likely source of confusing bugs.
The only time your problem exists is when you pass a literal nil. As #Valentin notes, if you pass a variable that happens to be nil, there is no issue; you don't need a special case. Why force the caller to pass an untyped nil? Just have the caller pass nothing.
I'm assuming that somethingGeneric does something actually interesting in the case that it is passed nil. If that's not the case; if the code you're showing is indicative of the real function (i.e. everything is wrapping in an if (input != nil) check), then this is a non-issue. Just don't call somethingGeneric(nil); it's a provable no-op. Just delete the line of code. But I'll assume there's some "other work."
func somethingGeneric<T>(input: T?) {
somethingGeneric() // Call the base form
if (input != nil) {
print(input!);
}
}
func somethingGeneric() {
// Things you do either way
}
somethingGeneric(input: "Hello, World!") // Hello, World!
somethingGeneric() // Nothing
Good question and answer. I have an Swift 4 update to contribute:
var str: String? = "Hello, playground"
var list: Array<String>? = ["Hello", "Coder256"]
func somethingGeneric<T>(_ input: T?) {
if (input != nil) {
print(input!);
}
}
func somethingGeneric(_ input: ExpressibleByNilLiteral?) {}
somethingGeneric("Hello, World!") // Hello, World!
somethingGeneric(nil) // *nothing printed*
somethingGeneric(nil as String?) // *nothing printed*
somethingGeneric(str) // Hello, playground
str = nil
somethingGeneric(str) // *nothing printed*
somethingGeneric(list) // ["Hello", "Coder256"]
list = nil
somethingGeneric(list) // *nothing printed*
I figured it out:
func somethingGeneric<T>(input: T?) {
if (input != nil) {
print(input!);
}
}
func somethingGeneric(input: NilLiteralConvertible?) {}
somethingGeneric("Hello, World!") // Hello, World!
somethingGeneric(nil) // *nothing printed*
somethingGeneric(nil as String?) // *nothing printed*
I think that you will never call somethingGeneric(nil) but mostly somethingGeneric(value) or somethingGeneric(function()) for which the compiler has enough info not to be stucked trying to guess the type:
func somethingGeneric<T>(input: T?) {
if let input = input {
print(input);
}
}
func neverString() -> String? {
return nil
}
let a: String? = nil
somethingGeneric("Hello, World!") // Hello, World!
somethingGeneric(a) // Nothing and no error
somethingGeneric(neverString()) // Nothing and no error
Also, I would use the if let syntax instead of if(value != nil).
Here is the solution I came up with that compiles on Swift 5, as many of the solutions here did not compile for me. It might be considered hacky as I use a stored variable to help things along. I was unable to come up with a Swift 5 version of the nil parameters that resolve to type T.
class MyClass {
func somethingGeneric<T>(input: T?) {
if let input = input {
print(input)
}
}
func somethingGeneric() {
somethingGeneric(Object.Nil)
}
}
final class Object {
static var Nil: Object? //this should never be set
}
Actually there is a way to do this, inspired by Alamofire's internal code.
You do not have to install Alamofire to use this solution.
Usage
Your problematic method definition
func someMethod<SomeGenericOptionalCodableType: Codable>(with someParam: SomeGenericOptionalCodableType? = nil) {
// your awesome code goes here
}
What works ✅
// invoke `someMethod` correctly
let someGoodParam1 = Alamofire.Empty.value
someMethod(with: someGoodParam1)
I think it is possible to use Alamofire.Empty.value as a default value in someMethod definition as a parameter.
What does not work ❌
// invoke `someMethod` incorrectly
let someBadParam1: Codable? = nil
let someBadParam2 = nil
someMethod(with: someBadParam1)
someMethod(with: someBadParam2)
Solution definition (source)
/// Type representing an empty value. Use `Empty.value` to get the static instance.
public struct Empty: Codable {
/// Static `Empty` instance used for all `Empty` responses.
public static let value = Empty()
}

Protocol: Cannot assign to 'X' in 'Y' in Swift

I just defined a very simple protocol and a a class using generics which can handle this protocol.
In the lines marked with error you will get the error: "Cannot assign to 'flag' in 'aObj'.
protocol Flag {
var flag: Bool {get set}
}
class TestFlag<T: Flag> {
func toggle(aObj: T) {
if aObj.flag {
aObj.flag = false; // <--- error
} else {
aObj.flag = true; // <--- error
}
}
}
Do you have an idea why and what I have to change to fix it?
From the docs:
Function parameters are constants by default. Trying to change the
value of a function parameter from within the body of that function
results in a compile-time error. This means that you can’t change the
value of a parameter by mistake.
In this case, you can add inout so that the toggle is persisted beyond your function call:
func toggle(inout aObj: T) {
if aObj.flag {
aObj.flag = false;
else {
aObj.flag = true;
}
}
You could have also done:
func toggle(var aObj: T) {
}
but that might not achieve what you wanted.
manojlds answer is correct and therefore I accepted it.
Nevertheless there was a similar answer some days ago with the same solution but with a other argumentation (seems now deleted).
The argumentation was about that the compliler can not know if the protocol is used for a class, a struct or a enum. With Swift, protocols can by applied on all this types. But struct instances use a by-value call and for classes instances (objects) it us a by-reference call.
From my perspective this answer was correct too, because you can solve the problem with a 2nd solution:
#objc
protocol Flag {
var flag: Bool {get set}
}
Just add the #obj attriute on the protocol. As a result you can use this protocol only for a class which lead to the result only by-refernece calls are allowd. Therefore the compiler don't need anymore the inout information.
But I searched for a solution to increase the reuse of the protocol and use now manojlds suggestions.

Swift Generics issue

Right now I want to be able to see if an object is included inside an Array so:
func isIncluded<U:Comparable>(isIncluded : U) -> Bool
{
for item in self
{
if (item == isIncluded)
{
return true
}
}
return false
}
If you notice this function belongs to an Array extension. The problem is if add it to this:
extension Array{
}
I receive the following error:
Could not find an overload for '==' that accepts the supplied arguments
I understand that I could probably need to tell what kind of objects should be inside the Array like so: T[] <T.GeneratorType.Element: Comparable>. But it doesn't work as well:
Braced block of statements is an unused closure
Non-nominal type 'T[]' cannot be extended
Expected '{' in extension
With Swift, we'll need to think whether there's a function that can do the trick -- outside the methods of a class.
Just like in our case here:
contains(theArray, theItem)
You can try it in a playground:
let a = [1, 2, 3, 4, 5]
contains(a, 3)
contains(a, 6)
I discover a lot of these functions by cmd-clicking on a Swift symbol (example: Array) and then by looking around in that file (which seems to be the global file containing all declarations for Swift general classes and functions).
Here's a little extension that will add the "contains" method to all arrays:
extension Array {
func contains<T: Equatable>(item: T) -> Bool {
for i in self {
if item == (i as T) { return true }
}
return false
}
}
To add, the problem is that T is already defined and the Array's definition of T does not conform to Equatable. You can either accomplish what you want by casting (like the accepted answer), and risking an invalid cast, or you could pass in a delegate where no casting would be required.
Consider modifying like so:
extension Array {
func contains(comparator: (T)->Bool) -> Bool {
for item in self {
if comparator(item) {
return true
}
}
return false
}
}
Example usage:
class Test {
func arrayContains(){
var test: Int[] = [0,1,3,4,5]
//should be true
var exists = test.contains({(item)->Bool in item == 0});
}
}
Not to say that it's impossible, but I haven't yet seen a way to extend structs or classes to put conditions on the original generics, for instance to guarantee Equatable or Comparable on an Array. However, for your particular issue, instead of extending, you can do something like the following:
var arr = [1, 2, 3]
var isIncluded : Bool = arr.bridgeToObjectiveC().doesContain(1)