HA Proxy in rethinkdb - haproxy

I'm trying to implement HA in rethink-db. Rethink-db documentation seems to be quite short, hence can someone here help in understanding How to we achieve HA in rethink-db?

what kind of HA are you looking for?
I'd first recommend looking at this article which explains running a RethinkdB Proxy instance.
You'd want to run this on the same server you are running your application. This proxy instance will intelligent route your query to the correct and available servers. Along with using the .wait(...) command pattern to wait until the table is ready for reads or writes by your application.
Let me know in the comments if there were other things you were looking for!

Related

Starting RabbitMQ in K8s with Pre-defined Topics

This might be a dumb question but I've never used RabbitMQ in K8s before and am trying to figure out the best way to accomplish what I'm about to ask. I also haven't been able to find as part of my searching any results that address this particular question.
I have a series of deployments/pods, of which a few need to communicate using RabbitMQ via a topic (or topics). Is there any way to spin up a RabbitMQ cluster such that, when it starts up, it auto-creates the specified topics, exchanges, etc.?
I've yet to see any way to actually do this, which leads me to believe that the "best" way to accomplish this is to use an init container (or some other startup script elsewhere) that programmatically uses the RabbitMQ API to create and configure the topics. I could use pre-determined topic names to avoid having to update things at runtime.

Monitor if Kafka is up?

I need to simply monitor if my Kafka cluster is up. Occasionally the machines running Kafka were shutdown. I want to send an email alert if the cluster is not available.
I can create a producer and consumer to send and receive dummy messages periodically. Is there a simpler way to do it?
You can use https://github.com/obsidiandynamics/kafdrop
It won't send you emails, but it much easier than send dummy messages
Actually knowing if cluster is up is not so easy at all, there is discussion with community what is the best practice to decide if kafka cluster is up and active but there is no current good way to get this information, as kafka architecture is distributed system, you might have big clusters and while one or more brokers are down , still having your cluster to give high available service, not effecting the integrity of data. Also you might have problems with one topic while on other topics it might work fine.
One suggestion I read which might give you the most certain approach is to produce "dummy" msgs to your applicative topics, and "skip" these msgs on consumption, that guarantee you that your application would work. I don't like this approach very much as it requires to "send junk to your main topics"
Other approaches are like you say "produce/consume to/from test/healthcheck topic" but it is might not give full guarantee that your application would work, this is a lot like select from dummy in other db approaches... if for them is good enough....
Another suggestion is to use AdminClient to read the metrics of cluster, if metrics are provided that usually means the cluster is healthy , also not very good guarantee...
I asked in comment which language are you using, maybe you are using something like spring which has HealthIndicator to check component status, but for your case it would be little different.
First of all, you should know that Kafka by default should be High
Available, so while building the cluster you should follow the bold
lines of best practices, you should ensure that you have replicas of
machines. This is good assumption that will make you satisfied over implementing all of this.
But, if you want to check health of a cluster, you can use admin process, you can use AdminClient, with help of some utilities; you can check list of topics, groups, etc that you have. But this not 100% guarantee for you although it is good workaround.
You can do that using as you mentioned periodic scheduler, and send email based on the findings you get. But again this is not the ideal solution, and HA cluster infrastructure should save lots of time for you if you build it correctly from the beginning.

Mapping out a Kafka+Zookeeper cluster

Background
I inherited a Kafka/Zookeeper installation. I have a passing knowledge of those - I know the general architecture, how clients work, about topics, etc., have been involved in programming Java clients etc.
But the installation is somewhat dubious. They are three instances of Kafka and Zookeeper each (in their separate docker containers). Supposedly they should work, but what I am seeing is all processes spout immense amount of log output with loads and loads of (diverse) warnings and errors. I have the impression that some of these seem to be quite normal (or are being self-healed all the time), and am having a very hard time figuring if everything works as intended or not, and set up correctly.
Some of these are - according to Google - related to unclean shutdowns of the brokers; corrupted individual topics and such. As this is a test environment, I can easily delete such files.
I know about some commands which help me check topics etc. (basic stuff, like listing them, displaying their individual configuration etc.).
However...
Question
Is there an online ressource/documentation which can be used as a systematic walkthrough to check whether everything is basically setup OK; for example to clear up these questions:
Do the three Zookeepers and the three Kafka instances correctly talk to each other for high-availability purposes? Do they have a correct "leader" etc.?
Are the servers generally "healthy", i.e., easily able to accept connections etc.?
How are the topics working (what's in there, how many messages, etc.)?
I am aware that one may very quickly dismiss this question as too generic; I am not asking you to solve my problems. I am looking for a ressource to systematically walk through such an installation - it may or may not cover the examples I have given, but it definitely should give a systematic way to find out if things are fundamentally wrong.
Rather than looking solely at logs, you might want to familiarize yourself with JMX metrics and how you can gather them across the cluster.
If you want to actually collect and analyze logs, you'll likely need to separately use something like Elasticsearch.
You won't see "how many messages" in a topic, and you'll need even more monitoring to know if a port is actually open and the Kafka process is running, the disks are filling up, etc.
My point here is that, Kafka needs fed and watered, if you plan to productionalize it, you can't just set up a small cluster and forget about it. Even if you think it's setup correctly at the beginning, increasing the load on it will cause it to fall in a bad state eventually.
For a limited trial for your dev environment to get a full look at your cluster health, Confluent Control Center can assist with that.
To solve the "what's in there" problem, I suggest you setup a Schema Registry, and convince Kafka producers to use it.
This packtpub tutorial/training by Stéphane Maarek is wonderful resource for setting kafka in cluster mode. However he did that in AWS cloud in ubuntu VM.
I have followed the same steps and installed in Vagrant VMs in cent OS. You can find the code here.
The VM has yahoo kafka manager to monitor the kafka internal details. list of broker available, healthy , partitions, leaders etc.,
kafka manager can help you with high level monitoring.
Please provide your comments.

Pooling in Phoenix for OrientDB database

I want to use Phoenix/Elixir with OrientDB. I decided to build a little demo app to get a good understanding of it.
As database driver I will use MarcoPolo and not use Ecto at all. MarcoPolo is very low level (binary driver) and doesn't support pooling.
Do I have to use pooling? Does Phoenix have a way to deal with this? Or do I have to implement it myself using something like Poolboy? Or something else?
I want to share the demo app to make life easier for others. So I want to go about it the right way. But maybe my approach is an overkill.
MarcoPolo is a non-blocking client which means that when a process asks the MarcoPolo connection to send a command to OrientDB, MarcoPolo sends the command to OrientDB right away but then doesn't wait for the response (which it then receives as an Erlang message because it uses :active on :gen_tcp). What this means in practice is that a single MarcoPolo connection should be capable of handling several client processes, thus eliminating the need for pooling if your application doesn't have to handle lots of requests to OrientDB.
In case you want to use pooling, the simplest solution is probably poolboy as you already figured out. I have no OrientDB-specific setup but you can find some information on how to setup a pool of connections to a db in the documentation for Redix (a Redis client for Elixir). The principles are the same. This is the section in the documentation for Redix that covers pooling.

Scala + Akka: How to develop a Multi-Machine Highly Available Cluster

We're developing a server system in Scala + Akka for a game that will serve clients in Android, iPhone, and Second Life. There are parts of this server that need to be highly available, running on multiple machines. If one of those servers dies (of, say, hardware failure), the system needs to keep running. I think I want the clients to have a list of machines they will try to connect with, similar to how Cassandra works.
The multi-node examples I've seen so far with Akka seem to me to be centered around the idea of scalability, rather than high availability (at least with regard to hardware). The multi-node examples seem to always have a single point of failure. For example there are load balancers, but if I need to reboot one of the machines that have load balancers, my system will suffer some downtime.
Are there any examples that show this type of hardware fault tolerance for Akka? Or, do you have any thoughts on good ways to make this happen?
So far, the best answer I've been able to come up with is to study the Erlang OTP docs, meditate on them, and try to figure out how to put my system together using the building blocks available in Akka.
But if there are resources, examples, or ideas on how to share state between multiple machines in a way that if one of them goes down things keep running, I'd sure appreciate them, because I'm concerned I might be re-inventing the wheel here. Maybe there is a multi-node STM container that automatically keeps the shared state in sync across multiple nodes? Or maybe this is so easy to make that the documentation doesn't bother showing examples of how to do it, or perhaps I haven't been thorough enough in my research and experimentation yet. Any thoughts or ideas will be appreciated.
HA and load management is a very important aspect of scalability and is available as a part of the AkkaSource commercial offering.
If you're listing multiple potential hosts in your clients already, then those can effectively become load balancers.
You could offer a host suggestion service and recommends to the client which machine they should connect to (based on current load, or whatever), then the client can pin to that until the connection fails.
If the host suggestion service is not there, then the client can simply pick a random host from it internal list, trying them until it connects.
Ideally on first time start up, the client will connect to the host suggestion service and not only get directed to an appropriate host, but a list of other potential hosts as well. This list can routinely be updated every time the client connects.
If the host suggestion service is down on the clients first attempt (unlikely, but...) then you can pre-deploy a list of hosts in the client install so it can start immediately randomly selecting hosts from the very beginning if it has too.
Make sure that your list of hosts is actual host names, and not IPs, that give you more flexibility long term (i.e. you'll "always have" host1.example.com, host2.example.com... etc. even if you move infrastructure and change IPs).
You could take a look how RedDwarf and it's fork DimDwarf are built. They are both horizontally scalable crash-only game app servers and DimDwarf is partly written in Scala (new messaging functionality). Their approach and architecture should match your needs quite well :)
2 cents..
"how to share state between multiple machines in a way that if one of them goes down things keep running"
Don't share state between machines, instead partition state across machines. I don't know your domain so I don't know if this will work. But essentially if you assign certain aggregates ( in DDD terms ) to certain nodes, you can keep those aggregates in memory ( actor, agent, etc ) when they are being used. In order to do this you will need to use something like zookeeper to coordinate which nodes handle which aggregates. In the event of failure you can bring the aggregate up on a different node.
Further more, if you use an event sourcing model to build your aggregates, it becomes almost trivial to have real-time copies ( slaves ) of your aggregate on other nodes by those nodes listening for events and maintaining their own copies.
By using Akka, we get remoting between nodes almost for free. This means that which ever node handles a request that might need to interact with an Aggregate/Entity on another nodes can do so with RemoteActors.
What I have outlined here is very general but gives an approach to distributed fault-tolerance with Akka and ZooKeeper. It may or may not help. I hope it does.
All the best,
Andy