Iteration for convergence in Matlab without using a while loop - matlab

I have to iterate a process where I have an initial guess for the Mach number (M0). This initial guess will give me another guess for the Mach number by using two equations (Mn). Eventually, i want to iterate this process untill the error between M0 and Mn is small. I have the following piece of code and it actually works well with a while loop.
However, I am afraid that the while loop will take many iterations and computational time for certain inputs since this will be part of a bigger code which most likely will give unfeasible inputs for the while loop.
Therefore my question is the following. How can I iterate this process within Matlab without consulting a while loop? The code that I am implementing now is the following:
%% Input
gamma = 1.4;
theta = atan(0.315);
cpi = -0.732;
%% Loop
M0 = 0.2; %initial guess
Err = 100;
iterations = 0;
while Err > 0.5E-3
B = (1-(M0^2)*(1-M0*cpi))^0.5;
Mn = (((gamma+1)/2) * ((B+((1-cpi)^0.5)*sec(theta)-1)^2/(B^2 + (tan(theta))^2)) - ((gamma-1)/2) )^-0.5;
Err = abs(M0 - Mn);
M0 = Mn;
iterations=iterations+1;
end
disp(iterations) disp(Mn)
Many thanks

Since M0 is calculated in each iteration and you have trigonometric functions, you cannot use another way than iteration structures (i.e. while).
If you had a specific increase or decrease at M0, then you could initialize a vector of M0 and do vector calculations for B and Err.
But, with sec and tan this is not possible.
Another wat would be to use the parallel processing. But, since you change the M0 at each iteration then you cannot use the parfor loop.
As for a for loop, in MATLAB you need an array for for "command" argument (e.g. 1:10 or 1:length(x) or i = A, where A = 1:10 or A = [1:10;11:20]). Since you evaluate a condition and depending on the result of the evaluation you judge if you continue the execution or not, it seems that the while loop (or do while in another language) is the only way to go.

I think you need to clarify the issue. If it the issue you want to solve is that some inputs take a long time to calculate, it is not the while loop that takes the time, it is the execution of the code multiple times that causes it. Any method that loops through will be restricted by the time the block of code takes to execute multiplied by the number of iterations required to converge.
You can introduce something to stop at a certain number of iterationtions, conceptually:
While ((err > tolerance) && (numIterations < limit))
If you want an answer which does not require iterating over the code, this is akin to finding a closed form solution, and I suspect this does not exist.
Edit to add: by not exist I mean in a practical form which can be implemented in a more efficient way then iterating to a solution.

Related

Is it possible to change two function using parfor loop?

Suppose I have two functions written on different scripts, say function1.m and function2.m The two computation in the two functions are independent (Some inputs may be the same, say function1(x,y) and function2(x,z) for example). However, running sequentially, say ret1 = function1(x,y); ret2 = function2(x,z); may be time consuming. I wonder if it is possible to run it in parfor loop:
parfor i = 1:2
ret(i) = run(['function' num2str(i)]); % if i=1,ret(1)=function1 and i=2, ret(2)=function2
end
Is it possible to write it in parfor loop?
Your idea is correct, but the implementation is wrong.
Matlab won't let you use run within parfor as it can't make sure it's a valid way to use parfor (i.e. no dependencies between iterations). The proper way to do that is to use functions (and not scrips) and an if statement to choose between them:
ret = zeros(2,1);
parfor k = 1:2
if k==1, ret(k) = f1(x,y); end
if k==2, ret(k) = f2(x,z); end
end
here f1 and f2 are some functions that return a scalar value (so it's suitable for ret(k) and each instance of the loop call a different if statement.
You can read here more about how to convert scripts to functions.
The rule of thumb for a parfor loop is that each iteration must be standalone. More accurately,
The body of the parfor-loop must be independent. One loop iteration
cannot depend on a previous iteration, because the iterations are
executed in a nondeterministic order.
That means that every iteration must be one which can be performed on its own and produce the correct result.
Therefore, if you have code that says, for instance,
parfor (i = 1:2)
function1(iterator,someNumber);
function2(iterator,someNumber);
end
there should be no issue with applying parfor.
However, if you have code that says, for instance,
persistentValue = 0;
parfor (i = 1:2)
persistentValue = persistentValue + function1(iterator,someNumber);
function2(iterator,persistentValue);
end
it would not be usable.
Yes. It is possible.
Here's an example:
ret = zeros(2,1);
fHandles = {#min, #max};
x = 1:10;
parfor i=1:2
ret(i) = fHandles{i}(x);
end
ret % show the results.
Whether this is a good idea or not, I don't know. There is overhead to setting up the parallel processing that may or may not make it worthwhile for you.
Typically the more iterations you have computed, the more value you get from setting up a parfor loop as the iterations are sliced-up and sent non-deterministically to the separate cores for processing. So you're getting use of 2 cores right now, but if you have many functions this may improve things.
The order that the iterations are run is not guaranteed (it could be that one core gets assigned a range of values for i, but we do not know if it those values are taken in order or randomly), so your code can't depend on other iterations of the loop.
In general, the MATLAB editor is pretty at flagging these issues ahead of time.
EDIT
Here's a proof of concept for a variable number of arguments to your different functions
ret = zeros(2,1);
fHandles = {#min, #max};
x = 1:10; % x is a 1x10 vector
y = rand(20); % y is a 20x20 matrix
z = 1; % z is a scalar value
fArgs = {{x};
{y,z}}; %wrap your arguments up in a cell
parfor i=1:2
ret(i) = fHandles{i}([fArgs{i}{:}]); %calls the function with its variable sized arguments here
end
ret % show the output
Again, this is just proof-of-concept. There are big warnings showing up in MATLAB about having to broadcast fArgs across all of the cores.

how can I make these four loop compute paralleling?

I have a problem with MathWorks Parallel Computing Toolbox in Matlab. See my code below
for k=1:length(Xab)
n1=length(Z)*(k-1)+1:length(Z)*k;
MX_j(1,n1)=JXab{k};
MY_j(1,n1)=JYab{k};
MZ_j(1,n1)=Z;
end
for k=length(Xab)+1:length(Xab)+length(Xbc)
n2=length(Z)*(k-1)+1:length(Z)*k;
MX_j(1,n2)=JXbc{k-length(Xab)};
MY_j(1,n2)=JYbc{k-length(Yab)};
MZ_j(1,n2)=Z;
end
for k=length(Xab)+length(Xbc)+1:length(Xab)+length(Xbc)+length(Xcd)
n3=length(Z)*(k-1)+1:length(Z)*k;
MX_j(1,n3)=JXcd{k-length(Xab)-length(Xbc)};
MY_j(1,n3)=JYcd{k-length(Yab)-length(Ybc)};
MZ_j(1,n3)=Z;
end
for k=length(Xab)+length(Xbc)+length(Xcd)+1:length(Xab)+length(Xbc)+length(Xcd)+length(Xda)
n4=length(Z)*(k-1)+1:length(Z)*k;
MX_j(1,n4)=JXda{k-length(Xab)-length(Xbc)-length(Xcd)};
MY_j(1,n4)=JYda{k-length(Yab)-length(Ybc)-length(Ycd)};
MZ_j(1,n4)=Z;
end
If I change the for-loop to parfor-loop, matlab warns me that MX_j is not an efficient variable. I have no idea how to solve this and how to make these for loops compute in parallel?
For me, it looks like you can combine it to one loop. Create combined cell arrays.
JX = cat(2,JXab, JXbc, JXcd, JXda);
JY = cat(2,JYab, JYbc, JYcd, JYda);
Check for the right dimension here. If your JXcc arrays are column arrays, use cat(1,....
After doing that, one single loop should do it:
n = length(Xab)+length(Xbc)+length(Xcd)+length(Xda);
for k=1:n
k2 = length(Z)*(k-1)+1:length(Z)*k;
MX_j(1,k2)=JX{k};
MY_j(1,k2)=JY{k};
MZ_j(1,k2)=Z;
end
Before parallizing anything, check if this still valid. I haven't tested it. If everything's nice, you can switch to parfor.
When using parfor, the arrays must be preallocated. The following code could work (untested due to lack of test-data):
n = length(Xab)+length(Xbc)+length(Xcd)+length(Xda);
MX_j = zeros(1,n*length(Z));
MY_j = MX_j;
MZ_j = MX_j;
parfor k=1:n
k2 = length(Z)*(k-1)+1:length(Z)*k;
MX_j(1,k2)=JX{k};
MY_j(1,k2)=JY{k};
MZ_j(1,k2)=Z;
end
Note: As far as I can see, the parfor loop will be much slower here. You simply assign some values... no calculation at all. The setup of the worker pool will take 99.9% of the total execution time.

Matlab break iteration if line execution requires too much time

I run a Matlab code with an iteration loop, and during each iteration it sample random numbers and uses the function intlinprog. My issue is that, due to the large amount of data I provide to the intlinprog function and to the stochastic values I assign to part of its variables, some of the iterations take a really long time.
My code is more or less like this:
rounds = 1E3;
Total_PF = zeros(rounds,4893);
for i=1:rounds
i
cT = zeros (4894,1);
cT(4894,1) = 1;
xint = linspace(1,4893,4893);
xint = xint';
AT = rand(4,4894);
beT = ones(4,1);
lb = zeros(4894,1);
ub = ones (4894,1);
ub(4894,1) = Inf;
[x] = intlinprog(cT,xint,AT,beT,[],[],lb,ub);
Total_PF(i,:)= (x(1:length(x)-1)');
end
Now in the minimal working example I provided, all the iterations are quite fast, but in my real code, sometimes intlinprog takes really long time ( I mean hours) to do a single iteration.
Therefore, I was wondering: is there a way to break the intlinprog while the intlinprog line is being executed? I was thinking that it may be done by modifying the matlab function but first of all I do not know if I am allowed to do it, secondly I am afraid that may be very dangerous.
This is very difficult to do effectively.
You could try using a timer object to watch the value. However, since you are using inherent Matlab functions and not executing external functions, you could set a time limit value and utilize tic and toc in a while loop while you execute the intlinprog and checking the value of toc against your time limit and break your code if toc exceeds the limit.

Matlab vectorization of multiple embedded for loops

Suppose you have 5 vectors: v_1, v_2, v_3, v_4 and v_5. These vectors each contain a range of values from a minimum to a maximum. So for example:
v_1 = minimum_value:step:maximum_value;
Each of these vectors uses the same step size but has a different minimum and maximum value. Thus they are each of a different length.
A function F(v_1, v_2, v_3, v_4, v_5) is dependant on these vectors and can use any combination of the elements within them. (Apologies for the poor explanation). I am trying to find the maximum value of F and record the values which resulted in it. My current approach has been to use multiple embedded for loops as shown to work out the function for every combination of the vectors elements:
% Set the temp value to a small value
temp = 0;
% For every combination of the five vectors use the equation. If the result
% is greater than the one calculated previously, store it along with the values
% (postitions) of elements within the vectors
for a=1:length(v_1)
for b=1:length(v_2)
for c=1:length(v_3)
for d=1:length(v_4)
for e=1:length(v_5)
% The function is a combination of trigonometrics, summations,
% multiplications etc..
Result = F(v_1(a), v_2(b), v_3(c), v_4(d), v_5(e))
% If the value of Result is greater that the previous value,
% store it and record the values of 'a','b','c','d' and 'e'
if Result > temp;
temp = Result;
f = a;
g = b;
h = c;
i = d;
j = e;
end
end
end
end
end
end
This gets incredibly slow, for small step sizes. If there are around 100 elements in each vector the number of combinations is around 100*100*100*100*100. This is a problem as I need small step values to get a suitably converged answer.
I was wondering if it was possible to speed this up using Vectorization, or any other method. I was also looking at generating the combinations prior to the calculation but this seemed even slower than my current method. I haven't used Matlab for a long time but just looking at the number of embedded for loops makes me think that this can definitely be sped up. Thank you for the suggestions.
No matter how you generate your parameter combination, you will end up calling your function F 100^5 times. The easiest solution would be to use parfor instead in order to exploit multi-core calculation. If you do that, you should store the calculation results and find the maximum after the loop, because your current approach would not be thread-safe.
Having said that and not knowing anything about your actual problem, I would advise you to implement a more structured approach, like first finding a coarse solution with a bigger step size and narrowing it down successivley by reducing the min/max values of your parameter intervals. What you have currently is the absolute brute-force method which will never be very effective.

Recursive loop optimization

Is there a way to rewrite my code to make it faster?
for i = 2:length(ECG)
u(i) = max([a*abs(ECG(i)) b*u(i-1)]);
end;
My problem is the length of ECG.
You should pre-allocate u like this
>> u = zeros(size(ECG));
or possibly like this
>> u = NaN(size(ECG));
or maybe even like this
>> u = -Inf(size(ECG));
depending on what behaviour you want.
When you pre-allocate a vector, MATLAB knows how big the vector is going to be and reserves an appropriately sized block of memory.
If you don't pre-allocate, then MATLAB has no way of knowing how large the final vector is going to be. Initially it will allocate a short block of memory. If you run out of space in that block, then it has to find a bigger block of memory somewhere, and copy all the old values into the new memory block. This happens every time you run out of space in the allocated block (which may not be every time you grow the array, because the MATLAB runtime is probably smart enough to ask for a bit more memory than it needs, but it is still more than necessary). All this unnecessary reallocating and copying is what takes a long time.
There are several several ways to optimize this for loop, but, surprisingly memory pre-allocation is not the part that saves the most time. By far. You're using max to find the largest element of a 1-by-2 vector. On each iteration you build this vector. However, all you're doing is comparing two scalars. Using the two argument form of max and passing it two scalar is MUCH faster: 75+ times faster on my machine for large ECG vectors!
% Set the parameters and create a vector with million elements
a = 2;
b = 3;
n = 1e6;
ECG = randn(1,n);
ECG2 = a*abs(ECG); % This can be done outside the loop if you have the memory
u(1,n) = 0; % Fast zero allocation
for i = 2:length(ECG)
u(i) = max(ECG2(i),b*u(i-1)); % Compare two scalars
end
For the single input form of max (not including creation of random ECG data):
Elapsed time is 1.314308 seconds.
For my code above:
Elapsed time is 0.017174 seconds.
FYI, the code above assumes u(1) = 0. If that's not true, then u(1) should be set to it's value after preallocation.