When learning the Writer Monad, I found it will collect the log value of each step, and then combine them together.
I have a question about the performance: When can I log them? If a method runs thousands of times, and it will hold many many strings in memory for a long time. I can only log them to file after it returns.
How do we use Writer Monad to log logs in real world? Is there any way to log the logs just in time?
Generally, no. Writer is intended to make logging pure and introspectable; flushing parts of it would violate that.
In practice you could probably make a Monoid that violates the laws by e.g. writing out the list whenever it gets too long. But that would sacrifice most of the benefits of using Writer in the first place.
I'd recommend benchmarking your requirements and explicitly runing and logging out the Writer at a granular, reasonable level e.g. per web request or per logical transaction.
Related
I am aware this is a very imprecise question and might be deemed inappropriate for stackoverflow. Unfortunately smaller applications (in terms of the number of actors) and 'tutorial-like' ones don't help me develop intuition about the overhead of message dispatch and a swift spot for granularity between a 'scala object' and a 'CORBA object'.
While almost certainly keeping a state of conversation with a client for example deserves an actor, in most real use cases it would involve conditional/parallel/alternative interactions modeled by many classes. This leaves the choice between treating actors as facades to quite complex services, similar to the justly retired EJB, or akin to smalltalk objects, firing messages between each other willy-nilly whenever communication can possibly be implemented in an asynchronous manner.
Apart from the overhead of message passing itself, there will also be overhead involved with lifecycle management, and I am wary of potential problems caused by chained-restarts of whole subtrees of actors due to exceptions or other errors in their root.
For the sake of this question we may assume that vast majority of the communication happens within a single machine and network crossing is insignificant.
I am not sure what you mean by an "overhead of message passing itself".
When network/serialisation is not involved then the overhead is negligible: one side pushes a message in a queue, another reads it from it.
Akka claims that it can go as fast as 50 millions messages per second on a single machine. This means that you wouldn't use actors just as façade for complex subsystems. You would rather model them as mush smaller "working units". They can be more complex compare to smalltalk objects when convenient. You could have, say, KafkaConsumerActor which would utilise internally other "normal" classes such as Connection, Configuration, etc., these don't have to be akka actors. But it is still small enough to be a simple working unit doing one simple thing (consuming a message and sending it somewhere).
50 millions a second is really a lot.
A memory footprint is also extremely small. Akka itself claims that you can have ~2.5 millions actors for just 1GB of heap. Compare to what a typical system does it is, indeed, nothing.
As for lifecycle, creating an actor is not much heavier than creating an class instance and a mailbox so I don't really expect it to be that significant.
Saying that, typically you don't have many actors in your system that would handle one message and die. Normally you spawn actors which live much longer. Like, an actor that calculates your mortgage repayments based on parameters you provide doesn't have any reason to die at all.
Also Akka makes it very simple to use actor pools (different kinds of them).
So performance here is very tweakable.
Last point is that you should compare Akka overhead in a context. For example, if your system is doing database queries, or serving/performing HTTP requests, or even doing significant IO of some sort, then probably overhead of these activities makes overhead of Akka so insignificant so you wouldn't even bother thinking about it. Like a roundtrip to the DB for 50 millis would be an equivalent of an overhead from ~2.5 millions akka messages. Does it matter?
So can you find an edge case scenario where Akka would force you to pay performance penalties? Probably. Akka is not a golden hammer (and nothing is).
But with all the above in mind you should think if it is Akka that is a performance bottleneck in your specific context or you are wasting time in micro-optimisation.
I'm writing an application that reads relatively large text files, validates and transforms the data (every line in a text file is an own item, there are around 100M items/file) and creates some kind of output. There already exists a multihreaded Java application (using BlockingQueue between Reading/Processing/Persisting Tasks), but I want to implement a Scala application that does the same thing.
Akka seems to be a very popular choice for building concurrent applications. Unfortunately, due to the asynchronous nature of actors, I still don't understand what a single actor can or can't do, e.g. if I can use actors as traditional workers that do some sort of calculation.
Several documentations say that Actors should never block and I understand why. But the given examples for blocking code always only mention such things as blocking file/network IO.. things that make the actor waiting for a short period of time which is of course a bad thing.
But what if the actor is "blocking" because it actually does something useful instead of waiting? In my case, the processing and transformation of a single line/item of text takes 80ms which is quite a long time (pure processing, no IO involved). Can this work be done by an actor directly or should I use a Future instead (but then, If I have to use Futures anyway, why use Akka in the first place..)?.
The Akka docs and examples show that work can be done directly by actors. But it seems that the authors only do very simplistic work (such as calling filter on a String or incrementing a counter and that's it). I don't know if they do this to keep the docs simple and concise or because you really should not do more that within an actor.
How would you design an Akka-based application for my use case (reading text file, processing every line which takes quite some time, eventually persisting the result)? Or is this some kind of problem that does not suit to Akka?
It all depends on the type of an actor.
I use this rule of thumb: if you don't need to talk to this actor and this actor does not have any other responsibilities, then it's ok to block in it doing actual work. You can treat it as a Future and this is what I would call a "worker".
If you block in an actor that is not a leaf node (worker), i.e. work distributor then the whole system will slow down.
There are a few patterns that involve work pulling/pushing or actor per request model. Either of those could be a fit for your application. You can have a manager that creates an actor for each piece of work and when the work is finished actor sends result back to manager and dies. You can also keep an actor alive and ask for more work from that actor. You can also combine actors and Futures.
Sometimes you want to be able to talk to a worker if your processing is more complex and involves multiple stages. In that case a worker can delegate work yet to another actor or to a future.
To sum-up don't block in manager/work distribution actors. It's ok to block in workers if that does not slow your system down.
disclaimer: by blocking I mean doing actual work, not just busy waiting which is never ok.
Doing computations that take 100ms is fine in an actor. However, you need to make sure to properly deal with backpressure. One way would be to use the work-pulling pattern, where your CPU bound actors request new work whenever they are ready instead of receiving new work items in a message.
That said, your problem description sounds like a processing pipeline that might benefit from using a higher level abstraction such as akka streams. Basically, produce a stream of file names to be processed and then use transformations such as map to get the desired result. I have something like this in production that sounds pretty similar to your problem description, and it works very well provided the data used by the individual processing chunks is not too large.
Of course, a stream will also be materialized to a number of actors. But the high level interface will be more type-safe and easier to reason about.
Alright so I have never done intense concurrent operations like this before, theres three main parts to this algorithm.
This all starts with a Vector of around 1 Million items.
Each item gets processed in 3 main stages.
Task 1: Make an HTTP Request, Convert received data into a map of around 50 entries.
Task 2: Receive the map and do some computations to generate a class instance based off the info found in the map.
Task 3: Receive the class and generate/add to multiple output files.
I initially started out by concurrently running task 1 with 64K entries across 64 threads (1024 entries per thread.). Generating threads in a for loop.
This worked well and was relatively fast, but I keep hearing about actors and how they are heaps better than basic Java threads/Thread pools. I've created a few actors etc. But don't know where to go from here.
Basically:
1. Are actors the right way to achieve fast concurrency for this specific set of tasks. Or is there another way I should go about it.
2. How do you know how many threads/actors are too many, specifically in task one, how do you know what the limit is on number of simultaneous connections is (Im on mac). Is there a golden rue to follow? How many threads vs how large per thread pool? And the actor equivalents?
3. Is there any code I can look at that implements actors for a similar fashion? All the code Im seeing is either getting an actor to print hello world, or super complex stuff.
1) Actors are a good choice to design complex interactions between components since they resemble "real life" a lot. You can see them as different people sending each other requests, it is very natural to model interactions. However, they are most powerful when you want to manage changing state in your application, which does not seem to be the case for you. You can achieve fast concurrency without actors. Up to you.
2) If none of your operations is blocking the best rule is amount of threads = amount of CPUs. If you use a non blocking HTTP client, and NIO when writing your output files then you should be fully non-blocking on IOs and can just safely set the thread count for your app to the CPU count on your machine.
3) The documentation on http://akka.io is very very good and comprehensive. If you have no clue how to use the actor model I would recommend getting a book - not necessarily about Akka.
1) It sounds like most of your steps aren't stateful, in which case actors add complication for no real benefit. If you need to coordinate multiple tasks in a mutable way (e.g. for generating the output files) then actors are a good fit for that piece. But the HTTP fetches should probably just be calls to some nonblocking HTTP library (e.g. spray-client - which will in fact use actors "under the hood", but in a way that doesn't expose the statefulness to you).
2) With blocking threads you pretty much have to experiment and see how many you can run without consuming too many resources. Worry about how many simultaneous connections the remote system can handle rather than hitting any "connection limits" on your own machine (it's possible you'll hit the file descriptor limit but if so best practice is just to increase it). Once you figure that out, there's no value in having more threads than the number of simultaneous connections you want to make.
As others have said, with nonblocking everything you should probably just have a number of threads similar to the number of CPU cores (I've also heard "2x number of CPUs + 1", on the grounds that that ensures there will always be a thread available whenever a CPU is idle).
With actors I wouldn't worry about having too many. They're very lightweight.
If you have really no expierience in Akka try to start with something simple like doing a one-to-one actor-thread rewriting of your code. This will be easier to grasp how things work in akka.
Spin two actors at the begining one for receiving requests and one for writting to the output file. Then when request is received create an actor in request-receiver actor that will do the computation and send the result to the writting actor.
I have been experimenting with JOliver's Event Store 3.0 as a potential component in a project and have been trying to measure the throughput of events through the Event Store.
I started using a simple harness which essentially iterated through a for loop creating a new stream and committing a very simple event comprising of a GUID id and a string property to a MSSQL2K8 R2 DB. The dispatcher was essentially a no-op.
This approach managed to achieve ~3K operations/second running on an 8 way HP G6 DL380 with the DB on a separate 32 way G7 DL580. The test machines were not resource bound, blocking looks to be the limit in my case.
Has anyone got any experience of measuring the throughput of the Event Store and what sort of figures have been achieved? I was hoping to get at least 1 order of magnitude more throughput in order to make it a viable option.
I would agree that blocking IO is going to be the biggest bottleneck. One of the issues that I can see with the benchmark is that you're operating against a single stream. How many aggregate roots do you have in your domain with 3K+ events per second? The primary design of the EventStore is for multithreaded operations against multiple aggregates which reduces contention and locks for read-world applications.
Also, what serialization mechanism are you using? JSON.NET? I don't have a Protocol Buffers implementation (yet), but every benchmark shows that PB is significantly faster in terms of performance. It would be interesting to run a profiler against your application to see where the biggest bottlenecks are.
Another thing I noticed was that you're introducing a network hop into the equation which increases latency (and blocking time) against any single stream. If you were writing to a local SQL instance which uses solid state drives, I could see the numbers being much higher as compared to a remote SQL instance running magnetic drives and which have the data and log files on the same platter.
Lastly, did your benchmark application use System.Transactions or did it default to no transactions? (The EventStore is safe without use of System.Transactions or any kind of SQL transaction.)
Now, with all of that being said, I have no doubt that there are areas in the EventStore that could be dramatically optimized with a little bit of attention. As a matter of fact, I'm kicking around a few backward-compatible schema revisions for the 3.1 release to reduce the number writes performed within SQL Server (and RDBMS engines in general) during a single commit operation.
One of the biggest design questions I faced when starting on the 2.x rewrite that serves as the foundation for 3.x is the idea of async, non-blocking IO. We all know that node.js and other non-blocking web servers beat threaded web servers by an order of magnitude. However, the potential for complexity introduced on the caller is increased and is something that must be strongly considered because it is a fundamental shift in the way most programs and libraries operate. If and when we do move to an evented, non-blocking model, it would be more in a 4.x time frame.
Bottom line: publish your benchmarks so that we can see where the bottlenecks are.
Excellent question Matt (+1), and I see Mr Oliver himself replied as the answer (+1)!
I wanted to throw in a slightly different approach that I myself am playing with to help with the 3,000 commits-per-second bottleneck you are seeing.
The CQRS Pattern, that most people who use JOliver's EventStore seem to be attempting to follow, allows for a number of "scale out" sub-patterns. The first one people usually queue off is the Event commits themselves, which you are seeing a bottleneck in. "Queue off" meaning offloaded from the actual commits and inserting them into some write-optimized, non-blocking I/O process, or "queue".
My loose interpretation is:
Command broadcast -> Command Handlers -> Event broadcast -> Event Handlers -> Event Store
There are actually two scale-out points here in these patterns: the Command Handlers and Event Handlers. As noted above, most start with scaling out the Event Handler portions, or the Commits in your case to the EventStore library, because this is usually the biggest bottleneck due to the need to persist it somewhere (e.g. Microsoft SQL Server database).
I myself am using a few different providers to test for the best performance to "queue up" these commits. CouchDB and .NET's AppFabric Cache (which has a great GetAndLock() feature). [OT]I really like AppFabric's durable-cache features that lets you create redundant cache servers that backup your regions across multiple machines - therefore, your cache stays alive as long as there is at least 1 server up and running.[/OT]
So, imagine your Event Handlers do not write the commits to the EventStore directly. Instead, you have a handler insert them into a "queue" system, such as Windows Azure Queue, CouchDB, Memcache, AppFabric Cache, etc. The point is to pick a system with little to no blocks to queue up the events, but something that is durable with redundancy built-in (Memcache being my least favorite for redundancy options). You must have that redundancy, in the case that if a server drops, you still have the event queued up.
To finally commit from this "Queued Event", there are several options. I like Windows Azure's Queue pattern for this, because of the many "workers" you can have constantly looking for work in the queue. But it doesn't have to be Windows Azure - I've mimicked Azure's Queue pattern in local code using a "Queue" and "Worker Roles" running in background threads. It scales really nicely.
Say you have 10 workers constantly looking into this "queue" for any User Updated events (I usually write a single worker role per Event type, makes scaling out easier as you get to monitor the stats of each type). Two events get inserted into the queue, the first two workers instantly pick up a message each, and insert them (Commit them) directly into your EventStore at the same time - multithreading, as Jonathan mentioned in his answer. Your bottleneck with that pattern would be whatever database/eventstore backing you select. Say your EventStore is using MSSQL and the bottleneck is still 3,000 RPS. That is fine, because the system is built to 'catch up' when those RPS drops down to, say 50 RPS after a 20,000 burst. This is the natural pattern CQRS allows for: "Eventual Consistency."
I said there was other scale-out patterns native to the CQRS patterns. Another, as I mentioned above, is the Command Handlers (or Command Events). This is one I have done as well, especially if you have a very rich domain domain as one of my clients does (dozens of processor-intensive validation checks on every Command). In that case, I'll actually queue off the Commands themselves, to be processed in the background by some worker roles. This gives you a nice scale out pattern as well, because now your entire backend, including the EvetnStore commits of the Events, can be threaded.
Obviously, the downside to that is that you loose some real-time validation checks. I solve that by usually segmenting validation into two categories when structuring my domain. One is Ajax or real-time "lightweight" validations in the domain (kind of like a Pre-Command check). And the others are hard-failure validation checks, that are only done in the domain but not available for realtime checking. You would then need to code-for-failure in Domain model. Meaning, always code for a way out if something fails, usually in the form of a notification email back to the user that something went wrong. Because the user is no longer blocked by this queued Command, they need to be notified if the command fails.
And your validation checks that need to go to the 'backend' is going to your Query or "read-only" database, riiiight? Don't go into the EventStore to check for, say, a unique Email address. You'd be doing your validation against your highly-available read-only datastore for the Queries of your front end. Heck, have a single CouchDB document be dedicated to only a list of all email addresses in the system as your Query portion of CQRS.
CQRS is just suggestions... If you really need realtime checking of a heavy validation method, then you can build a Query (read-only) store around that, and speed up the validation - on the PreCommand stage, before it gets inserted into the queue. Lots of flexibility. And I would even argue that validating things like empty Usernames and empty Emails is not even a domain concern, but a UI responsiblity (off-loading the need to do real-time validation in the domain). I've architected a few projects where I had very rich UI validation on my MVC/MVVM ViewModels. Of course my Domain had very strict validation, to ensure it is valid before processing. But moving the mediocre input-validation checks, or what I call "light-weight" validation, up into the ViewModel layers gives that near-instant feedback to the end-user, without reaching into my domain. (There are tricks to keep that in sync with your domain as well).
So in summary, possibly look into queuing off those Events before they are committed. This fits nicely with EventStore's multi-threading features as Jonathan mentions in his answer.
We built a small boilerplate for massive concurrency using Erlang/Elixir, https://github.com/work-capital/elixir-cqrs-eventsourcing using Eventstore. We still have to optimize db connections, pooling, etc... but the idea of having one process per aggregate with multiple db connections is aligned with your needs.
I have a lot of work (thousands of jobs) for a Scala application to process. Each piece of work is the file name of a 100 MB file. To process each file, I need to use an extractor object that is not thread safe (I can have multiple copies, but copies are expensive, and I should not make one per job). What is the best way to complete this work in parallel in Scala?
You can wrap your extractor in an Actor and send each file name to the actor as a message. Since an instance of an actor will process only one message at a time, thread safety won't be an issue. If you want to use multiple extractors, just start multiple instances of the actor and balance between them (you could write another actor to act as a load balancer).
The extractor actor(s) can then send extracted files to other actors to do the rest of the processing in parallel.
Don't make 1000 jobs, but make 4x250 jobs (targeting 4 threads) and give one extractor to each batch. Inside each batch, work sequentially. This might not be optimal parallel-wise, since one batch might finish earlier but it is very easy to implement.
Probably the correct (but more complicated) solution would be to make a pool of extractors, where jobs take extractors from and put them back after finishing.
I would make a thread pool, where each thread has an instance of the extractor class, and instantiate just as many of these threads as it takes to saturate the system (based on CPU usage, IO bandwidth, memory bandwidth, network bandwidth, contention for other shared resources, etc.). Then use a thread-safe work queue that these threads can pull tasks from, process them, and iterate until the container is empty.
Mind you, there should be one or several libraries in just about any modern language that implements exactly this. In C++, it would be Intel's Threading Building Blocks. In Objective-C, it would be Grand Central Dispatch.
It depends: what's the relative amount of CPU consumed by the extractor for each job ?
If it is very small, you have a classic single-producer/multiple-consumer problem for which you can find lots of solution in different languages. For Scala, if you are reluctant to start using actors, you can still use the Java API (Runnable, Executors and BlockingQueue, are quite good).
If it is a substantial amount (more than 10%), you app will never scale with a multithread model (see Amdhal law). You may prefer to run several process (several JVM) to obtain thread safety, and thus eliminate the non-sequential part.
First question: how quick does the work need to be completed?
Second question: would this work be isolated to a single physical box or what are your upper bounds on computational resource.
Third question: does the work that needs doing to each individual "job" require blocking and is it serialised or could be partitioned into parallel packets of work?
Maybe think about a distributed model whereby you scale through designing with a mind to pushing out across multiple nodes from the first instance, actors, remoteref all that crap first...try and keep your logic simple and easy - so serialised. Don't just think in terms of a single box.
Most answers here seem to dwell on the intricacies of spawning thread pools and executors and all that stuff - which is fine, but be sure you have a handle on the real problem first, before you start complicating your life with lots of thinking around how you manage the synchronisation logic.
If a problem can be decomposed, then decompose it. Don't overcomplicate it for the sake of doing so - it leads to better engineered code and less sleepless nights.