I have say n a x b matrices and I want to generate a new matrix of dimension a x b which is the mean of all n a x b matrices, i.e the first element of this new matrix is the mean of all first elements in each n a x b matrices and so on. Is there a way to compute this average matrix from a group of matrices in MATLAB? I had tried to do this by creating a cell but couldn't figure out how to take mean of each element of these matrices. I would appreciate any ideas or suggestions.
First, put your n matrix in a single axbxn matrix
M = cat(3, mat1, mat2, mat3, ...);
Or, if you work with a cell array,
M = cat(3, cellOfMats{:})
Then just use mean along the third dimension
meanmat = mean(M,3)
Related
In an attempt to create my own covariance function in MatLab I need to perform matrix multiplication on a row to create a matrix.
Given a matrix D where
D = [-2.2769 0.8746
0.6690 -0.4720
-1.0030 -0.9188
2.6111 0.5162]
Now for each row I need manufacture a matrix. For example the first row R = [-2.2770, 0.8746] I would want the matrix M to be returned where M = [5.1847, -1.9915; -1.9915, 0.7649].
Below is what I have written so far. I am asking for some advice to explain how to use matrix multiplication on a rows to produce matrices?
% Find matrices using matrix multiplication
for i=1:size(D, 1)
P1 = (D(i,:))
P2 = transpose(P1)
M = P1*P2
end
You are trying to compute the outer product of each row with itself stored as individual slices in a 3D matrix.
Your code almost works. What you're doing instead is computing the inner product or the dot product of each row with itself. As such it'll give you a single number instead of a matrix. You need to change the transpose operation so that it's done on P1 not P2 and P2 will now simply be P1. Also you are overwriting the matrix M at each iteration. I'm assuming you'd like to store these as individual slices in a 3D matrix. To do this, allocate a 3D matrix where each 2D slice has an equal number of rows and columns which is the number of columns in D while the total number of slices is equal to the total number of rows in D. Then just index into each slice and place the result accordingly:
M = zeros(size(D,2), size(D,2), size(D,1));
% Find matrices using matrix multiplication
for ii=1:size(D, 1)
P = D(ii,:);
M(:,:,ii) = P.'*P;
end
We get:
>> M
M(:,:,1) =
5.18427361 -1.99137674
-1.99137674 0.76492516
M(:,:,2) =
0.447561 -0.315768
-0.315768 0.222784
M(:,:,3) =
1.006009 0.9215564
0.9215564 0.84419344
M(:,:,4) =
6.81784321 1.34784982
1.34784982 0.26646244
Depending on your taste, I would recommend using bsxfun to help you perform the same operation but perhaps doing it faster:
M = bsxfun(#times, permute(D, [2 3 1]), permute(D, [3 2 1]));
In fact, this solution is related to a similar question I asked in the past: Efficiently compute a 3D matrix of outer products - MATLAB. The only difference is that the question wanted to find the outer product of columns instead of the rows.
The way the code works is that we shift the dimensions with permute of D so that we get two matrices of the sizes 2 x 1 x 4 and 1 x 2 x 4. By performing bsxfun and specifying the times function, this allows you to efficiently compute the matrix of outer products per slice simultaneously.
Let v be a row vector (1 x n matrix) and M be a n x m matrix.
I use the following piece of code to create a "weighted vector" (I hope the comments explain what it's supposed to be doing):
weighted_M = bsxfun(#times,v',M);
%creates a matrix with the i-th row of M being weighted (multiplied) by the i-th element of v
weighted_v = sum(weighted_M);
%sums the columns of weighted_M
Now the actual question: I have to do the same calculation for a lot of input vectors v. So instead I would like to input a matrix V that contains the vectors v as rows and output a matrix that contains the weighted vectors as rows. Is there any way to do this without using for loops?
If V is of size [k,n] and M is of size [n,m], and you're looking for the k weighted vectors, then you might simply need
weighted_vs = V*M;
an element of which is equal to
weighted_vs_ij = (V*M)ij = sum_l V_il * M_lj
First you multiply each row of M with a corresponding element of V (V_il * M_lj above for a fix i), then sum up as a function of the first index.
The result are the k weighted row vectors, each of length m.
I have a 512x512 image , which i made 4x4 block for entire image, then i want access the (3rd row , 3rd element) of the all indivial 4x4 matrices and add it to the index values, which i obtained. Please help me on below code.
[row col] = size(a);
m = zeros(row,col);
count = [(row-4)*(col-4)]/4;
outMat = zeros(4,4,count);
l = 0;
for i=2:4:row-4
for j=2:4:col-4
l = l + 1;
outMat(:,:,l) = double(a(i-1:i+2,j-1:j+2));% for each matrix i have to find(3rd row,3rd element of each matrix.
end;
end;
Adding the (3rd row,3rd element):
m(i,j) = sum(sum(a .* w)); %index value of each 4x4 matrix % w = 4x4 matrix.
LUT = m(i,j)+ outMat(3,3);%(3rd row,3rd element each matrix should be added to all m(i,j) values. In which i fail to add all(3rd row,3rd element) of all 4x4 matrices.
I am going to reword your question so that it's easier to understand, as well as allowing it to be easy for me to write an answer.
From your comments in Kostya's post, you have two images img1 and img2 where they are decomposed into 4 x 4 blocks. outMat would be a 3D matrix where each slice contains a 4 x 4 block extracted from img1. From this, you have a matrix m that stores a weighted sum of 4 x 4 blocks stored outMat.
Next, you'll have another matrix, let's call this outMat2, which also is a 3D matrix where each slice is a 4 x 4 block extracted from img2. From this 3D matrix, you wish to extract the third row and third column of each block, add this to the corresponding position of m and store the output into a variable called LUT.
All you have to do is extract a single vector that slices through all of the slices located at the third row and third column. You would then have to reshape this into a matrix that is the same size as m then add this on top of m and store it into a variable called LUT. Bear in mind that if we reshape this into a matrix, the reshaping will be done in column major format, and so you would stack the values by columns. Because your blocks were created row-wise, what we need to do reshape this matrix so that it has size(m,2) rows and size(m,1) columns then transpose it.
Therefore:
vec = outMat2(3,3,:);
vec = vec(:); %// Make sure it's a 1D vector
m2 = reshape(vec, size(m,2), size(m,1)).';
LUT = m + m2;
LUT will contain a 2D matrix where each element contains the weighted sum of the 4 x 4 blocks from img1 with the corresponding third row, third column of each block in img2.
Next time, please update your question so that you have all of the information. We shouldn't have to dig through your comments to figure out what you want.
I think you can do just
LUT = sum( sum( a(3:4:row,3:4,col) * w(3,3) ) );
Which of the following statements will find the minimum difference between any pair of elements (a,b) where a is from the vector A and b is from the vector B.
A. [X,Y] = meshgrid(A,B);
min(abs(X-Y))
B. [X,Y] = meshgrid(A,B);
min(abs(min(Y-X)))
C. min(abs(A-B))
D. [X,Y] = meshgrid(A,B);
min(min(abs(X-Y)))
Can someone please explain to me?
By saying "minimum difference between any pair of elements(a,b)", I presume you mean that you are treating A and B as sets and you intend to find the absolute difference in any possible pair of elements from these two sets. So in this case you should use your option D
[X,Y] = meshgrid(A,B);
min(min(abs(X-Y)))
Explanation: Meshgrid turns a pair of 1-D vectors into 2-D grids. This link can explain what I mean to say:
http://www.mathworks.com/help/matlab/ref/meshgrid.html?s_tid=gn_loc_drop
Hence (X-Y) will give the difference in all possible pairs (a,b) such that a belongs to A and b belongs to B. Note that this will be a 2-D matrix.
abs(X-Y) would return the absolute values of all elements in this matrix (the absolute difference in each pair).
To find the smallest element in this matrix you will have to use min(min(abs(X-Y))). This is because if Z is a matrix, min(Z) treats the columns of Z as vectors, returning a row vector containing the minimum element from each column. So a single min command will give a row vector with each element being the min of the elements of that column. Using min for a second time returns the min of this row vector. This would be the smallest element in the entire matrix.
This can help:
http://www.mathworks.com/help/matlab/ref/min.html?searchHighlight=min
Options C is correct if you treat A and B as vectors and not sets. In this case you won't be considering all possible pairs. You'll end up finding the minimum of (a-b) where a,b are both in the same position in their corresponding vectors (pair-wise difference).
D. [X,Y] = meshgrid(A,B);
min(min(abs(X-Y)))
meshgrid will generate two grids - X and Y - from the vectors, which are arranged so that X-Y will generate all combinations of ax-bx where ax is in a and bx is in b.
The rest of the expression just gets the minimum absolute value from the array resulting from the subtraction, which is the value you want.
CORRECT ANSWER IS D
Let m = size(A) and n = size(B)
You want to subtract each pair of (a,b) such that a is from vector A and b is from vector B.
meshgrid(A,B) creates two matrices X Y both of size nxm where X have rows sames have vector A while Yhas columns same as vector B .
Hence , Z = X-Y will give you a matrix with n*m values corresponding to the difference between each pair of values taken from A and B . Now all you have to do is to find the absolute minimum among all values of Z.
You can do that by
req_min = min(min(abs(z)))
The whole code is
[X Y ] = meshgrid(A,B);
Z= X-Y;
Z = abs(Z);
req_min = min(min(Z));
You could also use bsxfun instead of meshgrid:
min(min(abs(bsxfun(#minus, A(:), B(:).'))))
Or use pdist2:
min(min(pdist2(A(:),B(:))))
I have a M x N matrix. I want to multiply each of the N columns by a M x M matrix. The following does this in a loop, but I have no idea how to vectorize it.
u=repmat(sin(2*pi*f*t),[n 1]);
W = rand(n);
answer = size(u);
for i=1:size(u,2)
answer(:,i) = W*u(:,i);
end
You simply need to multiply the two matrices:
answer = W*u;
Think about it: in every iteration of your loop you multiply a matrix by a vector. The result of that operation is a vector, which you save into your answer in column i. Matrix multiplication is a similar thing: you can understand it as multiplication of a matrix (W) by a set of vectors, which form your matrix u.
So your code is good, just remove the loop :)