MongoDB Capped Collection max size 2G - mongodb

I have worked out the size of my documents for a 6 month period and it comes to just over 2 Gigs.
I want to keep onto all documents until the 6 month period is reached(does not need to be exact), so if i do this it works:
db.create_collection('mycollection', capped=True, size=2000000000)
My questions are:
Will mongo allocate this space immediately for the collection?
Is this bad practice to create a capped collection this size?
Most examples I see are set quiet small for the size.
I dont want to use the "Expire Data from Collections by Setting TTL"

Yes MongoDB will preallocate that space for the collection. Id suggest some kind of archiving methodology if your goal is to only be working with data thats about 6 months old and just have a process that moves old data into another collection. The capped collections would be a bad practice if you are updating the documents and using this as a write heavy collection. If your collection is just read heavy then it's fine but if you are updating these documents theres the potential that an update will fail if a document grows larger than its initial size. In a capped collection documents can not grow in size.
Another approach to this kind of setup that only wants to deal with most recent data would be to use tag aware sharding so that data that fits within a certain range is at the ready on fast hardware that gets accessed first, and older data gets pushed off to the slower, more commodity, hardware.

Related

MongoDB for a user tagging system

The requirement for this system is to store information about users and report on it. So...it makes sense for a User to be an individual document, and perhaps have an "event" or "tag" array on that user and a query could be performed that returned all users that had a specific event...that's fine. But - I'm worried about performance here. After a while this data is going to get very big, very quickly.
Let's say we have a really active user - it has billions of events and that particular user document is approaching gigabytes in size. In this instance, would the simple act of pulling that document down is going to take a while...and updating then sending it back will take a while as well (although I guess individual properties could be updated individually...)
What are the ways of managing this?
A document approaching gigabytes in size is already technically impossible, because MongoDB puts a limit of 16MB on documents.
When you have documents which grow over time, it is usually better to put the growing data in a separate collection as individual documents. The reason is that when a document grows beyond its initial size, MongoDB needs to move the document to another file location from time to time, which greatly slows down updates.

How to organize mongodb database for a huge set of time-value pairs for a lot of documents?

There is a set of registrators, say 100k. Every registrator 24 times a day gives value smth like 23.123. I need to save this value and time. Then I need to calculate how value changes for some period, e.g. 4jun2014 - 19jul2014: In order to do this I have to find last value of 3jun2014 and last value of 19jul2014.
First I am trying to estimate size of data stored by one registrator. Time+value must be lower than 100 bytes. 1 year is < 100*24*365 = 720kB of data, so I can easily store 10 years of data (since 7.2M < 16M limit) at my document. I decided not to store registered data at registeredData collection but to store registrator data embedded in registrator object as a tree timedata->year->month->day:
{
code: '3443-12',
timedata: {
2013: {
6: {
13: [
{t:1391345679, d:213.12},
{t:1391349679, d:213.14},
]
}
}
}
}
So it is easy to get values of the day: just get find({code: "3443-12"})[0].timedata[2013][6][13].
When I get new data, I just push it into array of existing document and it eventually grows from zero to 7Mb.
Questions
What is the stored size of {t:1391345679, d:213.12} line, is it less than 100bytes?
Is it right way to organize database for such purposes?
100k documents with 5Mb size = 500G. Does MongoDB deal fast with database size much more than RAM size?
Update
I decided to store time not as a timestamp but as time in seconds from the start of a day: 0 - 86399: {t: 86123, d: 213.12}.
Regarding your last question, " Does MongoDB deal fast with database size much more than RAM size?" the answer is it can, but it depends on a number of factors.
MongoDB works best when the working set fits within the memory available to MongoDB. When it does not you tend to see rather rapid performance declines. How big that working set is a function of database schema, indexes built and your data access patterns.
Let's say you have a years worth of data in your database, but regularly only touch the last few days of data. Then your working set is likely to be composed of the memory required to keep the last few days of data in memory, plus enough of the indexes in memory for you to properly update and read from them.
Alternatively, if you are randomly accessing data across a year and have high and update volume you may have a significantly larger working set to deal with.
As a point of comparison, I've got a production MongoDB instance that has around 500M documents in it, taking up around 2 TB of disk storage. Total memory on the primary of the replica set is 128GB (1/16th the total storage) and we're not experiencing any performance problems.
The key for all of it though is how much data do you access over time. The killer for MongoDB performance is memory contention, when you are paging out data to service a new request only to re-page that old data right back in. And it gets far worse if you cannot keep your indexes in memory.
I've tested it and it is less than 100 B, in deed, it is 48 B:
var num=100000;
for(i=0;i<num;i++){
db.foo.insert({t:1391345679, d:213.12})
};
db.foo.stats().avgObjSize // => Outputs 48
It looks like what you are doing is kind of a hack to avoid normalising your data (m.b. for transaction purposes?) and sooner or later you may run into problems (e.g. requirements change, size of your data changes, new fields are introduced etc.) I do not know your schema and domain, but if you go with denomarmalized model as you are doing you must be sure that documents will not exceed the size limit of 16MB. That being said, I would recommend schema design article.
Answers:
The previous answer gives a hint about the document size. You can use it as a starting point.
Choosing an effective data models depends on your application needs. The main question is the decision to denormalize or use linking. Note, generally with denormalized data you achieve better performance for read operations, as well as the ability to request and retrieve related data in a single database operation. Embedding makes it possible to update a document in a single atomic write operation (transactionally). So, when to use embedded (denormalized):
you have “contains” relationships between entities. See Model
One-to-One Relationships with Embedded Documents.
you have one-to-many relationships between entities. In these relationships the “many” or
child documents always appear with or are viewed in the context of the
“one” or parent documents. See Model One-to-Many Relationships with
Embedded Documents.
In your situation your documents will grow after creation which can impact write performance and lead to data fragmentation. You can control this with padding factor.
- About the performance: it depends on how you create your indexes. More importantly, on your access patterns. For each query executed often, check out the output from explain() to see how many documents have been checked.

Updating large number of records in a collection

I have collection called TimeSheet having few thousands records now. This will eventually increase to 300 million records in a year. In this collection I embed few fields from another collection called Department which is mostly won't get any updates and only rarely some records will be updated. By rarely I mean only once or twice in a year and also not all records, only less than 1% of the records in the collection.
Mostly once a department is created there won't any update, even if there is an update, it will be done initially (when there are not many related records in TimeSheet)
Now if someone updates a department after a year, in a worst case scenario there are chances collection TimeSheet will have about 300 million records totally and about 5 million matching records for the department which gets updated. The update query condition will be on a index field.
Since this update is time consuming and creates locks, I'm wondering is there any better way to do it? One option that I'm thinking is run update query in batches by adding extra condition like UpdatedDateTime> somedate && UpdatedDateTime < somedate.
Other details:
A single document size could be about 3 or 4 KB
We have a replica set containing three replicas.
Is there any other better way to do this? What do you think about this kind of design? What do you think if there numbers I given are less like below?
1) 100 million total records and 100,000 matching records for the update query
2) 10 million total records and 10,000 matching records for the update query
3) 1 million total records and 1000 matching records for the update query
Note: The collection names department and timesheet, and their purpose are fictional, not the real collections but the statistics that I have given are true.
Let me give you a couple of hints based on my global knowledge and experience:
Use shorter field names
MongoDB stores the same key for each document. This repetition causes a increased disk space. This can have some performance issue on a very huge database like yours.
Pros:
Less size of the documents, so less disk space
More documennt to fit in RAM (more caching)
Size of the do indexes will be less in some scenario
Cons:
Less readable names
Optimize on index size
The lesser the index size is, the more it gets fit in RAM and less the index miss happens. Consider a SHA1 hash for git commits for example. A git commit is many times represented by first 5-6 characters. Then simply store the 5-6 characters instead of the all hash.
Understand padding factor
For updates happening in the document causing costly document move. This document move causing deleting the old document and updating it to a new empty location and updating the indexes which is costly.
We need to make sure the document don't move if some update happens. For each collection there is a padding factor involved which tells, during document insert, how much extra space to be allocated apart from the actual document size.
You can see the collection padding factor using:
db.collection.stats().paddingFactor
Add a padding manually
In your case you are pretty sure to start with a small document that will grow. Updating your document after while will cause multiple document moves. So better add a padding for the document. Unfortunately, there is no easy way to add a padding. We can do it by adding some random bytes to some key while doing insert and then delete that key in the next update query.
Finally, if you are sure that some keys will come to the documents in the future, then preallocate those keys with some default values so that further updates don't cause growth of document size causing document moves.
You can get details about the query causing document move:
db.system.profile.find({ moved: { $exists : true } })
Large number of collections VS large number of documents in few collection
Schema is something which depends on the application requirements. If there is a huge collection in which we query only latest N days of data, then we can optionally choose to have separate collection and old data can be safely archived. This will make sure that caching in RAM is done properly.
Every collection created incur a cost which is more than cost of creating collection. Each of the collection has a minimum size which is a few KBs + one index (8 KB). Every collection has a namespace associated, by default we have some 24K namespaces. For example, having a collection per User is a bad choice since it is not scalable. After some point Mongo won't allow us to create new collections of indexes.
Generally having many collections has no significant performance penalty. For example, we can choose to have one collection per month, if we know that we are always querying based on months.
Denormalization of data
Its always recommended to keep all the related data for a query or sequence of queries in the same disk location. You something need to duplicate the information across different documents. For example, in a blog post, you'll want to store post's comments within the post document.
Pros:
index size will be very less as number of index entries will be less
query will be very fast which includes fetching all necessary details
document size will be comparable to page size which means when we bring this data in RAM, most of the time we are not bringing other data along the page
document move will make sure that we are freeing a page, not a small tiny chunk in the page which may not be used in further inserts
Capped Collections
Capped collection behave like circular buffers. They are special type of fixed size collections. These collection can receive very high speed writes and sequential reads. Being fixed size, once the allocated space is filled, the new documents are written by deleting the older ones. However document updates are only allowed if the updated document fits the original document size (play with padding for more flexibility).

Is it a good idea to generate per day collections in mongodb

Is it a good idea to create per day collections for data on a given day (we could start with per day and then move to per hour if there is too much data). Is there a limit on the number of collections we can create in mongodb, or does it result in performance loss (is it an overhead for mongodb to maintain so many collections). Does a large number of collections have any adverse effect on performance?
To give you more context, the data will be more like facebook feeds, and only the latest data (say last one week or month) is more important to us. Making per day collections keeps the number of documents low, and probably would result in fast access. Even if we need old data, we can fall back to older collections. Does this make sense, or am I heading in the wrong direction?
what you actually need is to archive the old data. I would suggest you to take a look at this thread at the mongodb mailing list:
https://groups.google.com/forum/#!topic/mongodb-user/rsjQyF9Y2J4
Last post there from Michael Dirolf (10gen)says:
"The OS will handle LRUing out data, so if all of your queries are
touching the same portion of data that should stay in memory
independently of the total size of the collection."
so I guess you can stay with single collection and good indexes will do the work.
anyhow, if the collection goes too big you can always run manual archive process.
Yes, there is a limit to the number of collections you can make. From the Mongo documentation Abhishek referenced:
The limitation on the number of namespaces is the size of the namespace file divided by 628.
A 16 megabyte namespace file can support approximately 24,000 namespaces. Each index also counts as a namespace.
Indexes etc. are included in the namespaces, but even still, it would take something like 60 years to hit that limit.
However! Have you considered what happens when you want data that spans collections? In other words, if you wanted to know how many users have feeds updated in a week, you're in a bit of a tight spot. It's not easy/trivial to query across collections.
I would recommend instead making one collection to store the data and simply move data out periodically as Tamir recommended. You can easily write a job to move data out of the collection every week or every month.
Creating a collection is not much overhead, but it the overhead is larger than creating a new document inside a collections.
There is a limitation on the no of collections that you can create: " http://docs.mongodb.org/manual/reference/limits/#Number of Namespaces "
Making new collections to me, won't be having any performance difference because in RAM you cache only those data that you actually query. In your case it will be recent feeds etc.
But having per day/hour collection will help you in achieving old data very easily.

mongodb got slow when the document count went around 100, 000 . Any performance optimization?

I run a single mongodb instance which is getting inserted with logs from an app server. the current rate of insert in production is 10 inserts per second. And its a capped collection. i DONT USE ANY INDEXES . Queries were running faster when there were small number of records. only one collection has that amount of data. even querying from collection that has very few rows has become very slow. IS there any means to improve the performance.
-Avinash
This is a very difficult question to answer because we dont know much about your configuration or your document structure.
One thing that immediately pops into my head is that you are running out of memory. 10 inserts per second doesn't mean much because we do not know how big the inserted documents are.
If you are inserting larger documents at 10 per second, you could be eating up memory, causing the operating system to push some of your records to disk.
When you query without using an index, you are forced to scan every document. If your documents have been pushed to disk by the OS, you will begin having page faults. Mongo will need to fetch pages of data off the hard disk, and load them into memory so that they can be scanned. Before doing this, the operating system will need to make room for that data in memory by flushing other parts of memory out to disk.
It sounds like you are are I/O bound and the two biggest things you can do to fix this are
Add more memory to the machine running mongod
Start using indexes so that the database does not need to do full collection scans
Use proper indexes, though that will have some effect on the efficiency of insertion in a capped collection.
It would be better if you can share the collection structure and the query you are using.