How do I declare that a computed property 'throws' in Swift? - swift

class SomeClass {
var someProperty: Int {
throw Err("SNAFU")
}
}
For code like the above, the swift binary complains 'error is not handled because the enclosing function is not declared 'throws'.
How do I declare that 'someProperty' 'throws' in the above?
class SomeClass {
var someProperty throws: Int {
}
}
and
class SomeClass {
var someProperty: throws Int {
}
}
and
class SomeClass {
var someProperty: Int throws {
}
}
don't seem to work.

This functionality is added for read-only computed properties in Swift 5.5 as part of SE-0310 (included in Xcode 13).
Based on SE-0310, the syntax would be:
class SomeClass {
var someProperty: Int {
get throws {
throw Err("SNAFU")
}
}
}
Here is the previous answer for versions of Swift prior to 5.5:
You cannot throw from a computed property. You must use a function if you want to throw. The Declarations section of the Language Reference part at the end of The Swift Programming Language only lists throws (and rethrows) as a keyword for function and initializer declarations.

While it's not possible (yet) to throw from computed properties in Swift, I found Chris Lattner himself adresses this very same question on one of Apple Developer Forums threads:
We agree that you should be able to mark the getters and setters as "throws" in subscripts and computed properties, but haven't gotten there yet. We are likely to support this at some time, but it isn't clear if it will make it in time for Swift 2.

Let me suggest a workaround: a property can be declared as having type of Result<DesiredPropertyType, Error>. This way it can be accessed like this:
do {
try self.failableProperty.get()
} catch {
...
}
get() is a built-in method of Swift's Result.
UPDATE: this is getting addressed in Swift 5.5 with "effectful read-only properties": https://github.com/apple/swift-evolution/blob/main/proposals/0310-effectful-readonly-properties.md.

Related

Conforming to Protocols in Swift Using Extensions

I have a Swift protocol defined as follows:
protocol SmartContract {
func apply(transaction :Transaction)
func addBrokenRule(_ brokenRule: BrokenRule)
var brokenRules :[BrokenRule] { get set }
}
I have an extension on SmartContract defined as follows:
extension SmartContract {
mutating func addBrokenRule(_ brokenRule :BrokenRule) {
if self.brokenRules == nil {
self.brokenRules = [BrokenRule]()
}
self.brokenRules.append(brokenRule)
}
}
I also have a class MoneyTransferContract which conforms to the protocol but does not define brokenRules. This is because I have defined the brokenRules inside the extension.
class MoneyTransferContract : SmartContract {
func apply(transaction :Transaction) { // do something here }
}
My question is how can I make sure that MoneyTransformContract conforms to the SmartContract protocol. Is there anyway to have BrokenRule available to MoneyTransformContract without defining it again and again in different SmartContracts.
john doe wrote:
Is there anyway to have BrokenRule available to MoneyTransformContract without defining it again and again in different SmartContracts.
What you want is a superclass/subclass relationship for that behavior.
class SmartContract {
func apply(transaction :Transaction) {
//implemention
}
var brokenRules: [BrokenRule] = []
func addBrokenRule(_ brokenRule :BrokenRule) {
brokenRules.append(brokenRule)
}
}
class MoneyTransferContract : SmartContract {
// Gets `brokenRules` for free from superclass.
}
class BitCoinTransferContract : SmartContract {
// Gets `brokenRules` for free from superclass.
}
If I'm understanding correctly, there is no way to do what you want. (EDIT: as Jeff notes, if you want to use inheritance as opposed to a protocol, this is possible. See his answer for how). Protocols in Swift are just lists of requirements that it is up to implementing types to properly define. Protocols generally don't have any say over the actual behavior or implementation of implementing types, and only guarantees that the properties and functions exist. Your SmartContract protocol says that every SmartContract must have a function apply(transaction:), a function addBrokenRule(_:), and a property brokenRules which can be accessed and modified.
When a type implements SmartContract it has to define each one of these. Just as you have to write out the signature to tell the compiler that you are implementing apply(transaction:), you also have to tell the compiler how the property brokenRules will be implemented. You could obtain this functionality in a somewhat useless way, by defining an extension which has brokenRules as a computed property which is essentially a no-op:
extension SmartContract {
var brokenRules: [BrokenRule] {
get { return [] }
set(newRules) { }
}
}
But this means that any implementing type which forgets to specify their own implementation for brokenRules will have a brokenRules property which always resolves to an empty array.
One reason for this is Swift's computed properties. For some implementing type, it might not make sense for brokenRules to be stored as an array--and a protocol can't force that. That's an implementation detail that a protocol author can't (and shouldn't) worry about. For instance, if BrokenRules were easily convertible to and from strings, you could imagine some class which implemented SmartContract like so:
class StringContract: SmartContract {
var ruleString: String
var brokenRules: [BrokenRule] {
get {
let stringArray = ruleString.split(separator: ",")
return stringArray.map { BrokenRule(string:String($0)) }
}
set(newRules) {
let stringArray = newRules.map { $0.stringValue }
ruleString = stringArray.joined(separator: ",")
}
}
func apply(transaction: Transaction) {
// do something here...
}
init() {
ruleString = ""
}
}
Note that we don't have to specify an implementation for addBrokenRule(_:). That's what your protocol extension gets you. By providing an implementation in the extension, you ensure that all implementing types have a default implementation of the function, and so they can choose to forego defining their own.

Swift: "failable initializer 'init()' cannot override a non-failable initializer" vs. default parameters

If I declare
public class A: NSObject {
public class X { }
public init?(x: X? = nil) { }
}
all is fine. When using it like let a = A(), the initializer is called as expected.
Now, I'd like to have the nested class X private, and the parameterized init as well (has to be, of course). But a simple init?() should stay publicly available as it was before. So I write
public class B: NSObject {
private class X { }
private init?(x: X?) { }
public convenience override init?() { self.init(x: nil) }
}
But this gives an error with the init?() initializer: failable initializer 'init()' cannot override a non-failable initializer with the overridden initializer being the public init() in NSObject.
How comes I can effectively declare an initializer A.init?() without the conflict but not B.init?()?
Bonus question: Why am I not allowed to override a non-failable initializer with a failable one? The opposite is legal: I can override a failable initializer with a non-failable, which requires using a forced super.init()! and thus introduces the risk of a runtime error. To me, letting the subclass have the failable initializer feels more sensible since an extension of functionality introduces more chance of failure. But maybe I am missing something here – explanation greatly appreciated.
This is how I solved the problem for me:
I can declare
public convenience init?(_: Void) { self.init(x: nil) }
and use it like
let b = B(())
or even
let b = B()
— which is logical since its signature is (kind of) different, so no overriding here. Only using a Void parameter and omitting it in the call feels a bit strange… But the end justifies the means, I suppose. :-)
After a bit of fiddling I think I understand. Let's consider a protocol requiring this initializer and a class implementing it:
protocol I {
init()
}
class A : I {
init() {}
}
This gives the error: "Initializer requirement 'init()' can only be satisfied by a required initializer in non-final class 'A'". This makes sense, as you could always declare a subclass of A that doesn't inherit that initializer:
class B : A {
// init() is not inherited
init(n: Int) {}
}
So we need to make our initializer in A required:
class A : I {
required init() {}
}
Now if we look at the NSObject interface we can see that the initializer is not required:
public class NSObject : NSObjectProtocol {
[...]
public init()
[...]
}
We can confirm this by subclassing it, adding a different initializer and trying to use the normal one:
class MyObject : NSObject {
init(n: Int) {}
}
MyObject() // Error: Missing argument for parameter 'n:' in call
Now here comes the weird thing: We can extend NSObject to conform to the I protocol, even though it doesn't require this initializer:
extension NSObject : I {} // No error (!)
I honestly think this is either a bug or a requirement for ObjC interop to work (EDIT: It's a bug and already fixed in the latest version). This error shouldn't be possible:
extension I {
static func get() -> Self { return Self() }
}
MyObject.get()
// Runtime error: use of unimplemented initializer 'init()' for class '__lldb_expr_248.MyObject'
Now to answer your actual question:
In your second code sample, the compiler is right in that you cannot override a non-failable with a failable initializer.
In the first one, you aren't actually overriding the initializer (no override keyword either), but instead declaring a new one by which the other one can't be inherited.
Now that I wrote this much I'm not even sure what the first part of my answer has to do with your question, but it's nice to find a bug anyways.
I suggest you to do this instead:
public convenience override init() { self.init(x: nil)! }
Also have a look at the Initialization section of the Swift reference.

Calling a method from a struct within the same class

I'd like to logically organize class properties to signify that they are one logical unit and to distinguish them from other class properties that are less tightly related.
I thought of doing this using a struct within my class. However, it seems that I can't call class methods from the struct property setters. I get what seems to be an inappropriate compile error: "missing argument for parameter #1 in call"
This seems to be different from calling method from struct in swift
where the function is within the struct. In my case, the methods are generic and don't just apply to my struct but to all class properties. Therefore, I don't want to move them within the struct.
Do you have ideas on how to organize properties into tight(er) logical units within classes?
class MyClass {
struct MyStruct {
static var aVarInMyStruct: String? {
didSet {
anotherVarInMyStruct = foo() // This gives compile error "missing argument for parameter #1 in call"
}
}
static var anotherVarInMyStruct: String?
}
func foo() {
println("I am foo()")
}
}
The inner type MyStruct knows nothing about its outer type MyClass. So there is no foo function to call from MyStruct. To better organize your code I suggest you to use // MARK: - whatever this section is comments. Types are not here to organize codes. Types are here to create right abstractions for the program.
I fix your bug:
class MyClass {
struct MyStruct {
static var aVarInMyStruct: String? {
didSet {
anotherVarInMyStruct = MyClass.foo() // This gives compile error "missing argument for parameter #1 in call"
}
}
static var anotherVarInMyStruct: String?
}
static func foo()->String {
println("I am foo()")
return "it is ok"
}
}

hash() and description() not allowed in Xcode 6.3 for NSObject

In my Swift library EVCloudKitDao I do a lot with reflection. Because of that I have set my base class of my data objects to NSObject. Now after the upgrade to Xcode 6.3 I get an error on the 2 functions for getting the hash and the description of the object. The description function was a nice to have, but i do need the hash to make my objects working with a Set.
Here is the code that I have
public class EVCloudKitDataObject : NSObject, NSCoding, Printable, Hashable, Equatable {
public func hash() -> Int {
return self.hashValue
}
public func description() -> String {
return EVReflection.description(self)
}
}
The errors that I get is:
/Users/evermeer/Desktop/dev/GitHub/EVCloudKitDao/AppMessage/AppMessage/CloudKit/EVCloudKitDataObject.swift:106:17:
Method 'hash()' with Objective-C selector 'hash' conflicts with getter
for 'hash' from superclass 'NSObject' with the same Objective-C
selector
/Users/evermeer/Desktop/dev/GitHub/EVCloudKitDao/AppMessage/AppMessage/CloudKit/EVCloudKitDataObject.swift:86:17:
Method 'description()' with Objective-C selector 'description'
conflicts with getter for 'description' from superclass 'NSObject'
with the same Objective-C selector
Does anyone know how I could solve this?
You can not use override.
As the error says, in both cases there's a naming conflict between a property and a method. The most obvious way to fix is by turning your 2 methods into properties:
public override var hash: Int {
return self.hashValue
}
public override var description: String {
return EVReflection.description(self)
}
which can also be written as:
public override var hash:Int {
get {
return self.hashValue
}
}
public override var description : String {
get {
return EVReflection.description(self)
}
}
The reason why it worked in the previous version is most likely because of this:
Swift now detects discrepancies between overloading and overriding in the Swift type system and the effective behavior seen via the Objective-C runtime.
Read more in the release notes (search for 18391046 and 18383574)

Protocol: Cannot assign to 'X' in 'Y' in Swift

I just defined a very simple protocol and a a class using generics which can handle this protocol.
In the lines marked with error you will get the error: "Cannot assign to 'flag' in 'aObj'.
protocol Flag {
var flag: Bool {get set}
}
class TestFlag<T: Flag> {
func toggle(aObj: T) {
if aObj.flag {
aObj.flag = false; // <--- error
} else {
aObj.flag = true; // <--- error
}
}
}
Do you have an idea why and what I have to change to fix it?
From the docs:
Function parameters are constants by default. Trying to change the
value of a function parameter from within the body of that function
results in a compile-time error. This means that you can’t change the
value of a parameter by mistake.
In this case, you can add inout so that the toggle is persisted beyond your function call:
func toggle(inout aObj: T) {
if aObj.flag {
aObj.flag = false;
else {
aObj.flag = true;
}
}
You could have also done:
func toggle(var aObj: T) {
}
but that might not achieve what you wanted.
manojlds answer is correct and therefore I accepted it.
Nevertheless there was a similar answer some days ago with the same solution but with a other argumentation (seems now deleted).
The argumentation was about that the compliler can not know if the protocol is used for a class, a struct or a enum. With Swift, protocols can by applied on all this types. But struct instances use a by-value call and for classes instances (objects) it us a by-reference call.
From my perspective this answer was correct too, because you can solve the problem with a 2nd solution:
#objc
protocol Flag {
var flag: Bool {get set}
}
Just add the #obj attriute on the protocol. As a result you can use this protocol only for a class which lead to the result only by-refernece calls are allowd. Therefore the compiler don't need anymore the inout information.
But I searched for a solution to increase the reuse of the protocol and use now manojlds suggestions.