I have a neural network running in pybrain and I'm happy enough with the correctness of it, now I just want to improve the accuracy. Until I begin experimenting with the various parameters, however, I want to be sure I am starting this exploration from the same point each time.
If I understand correctly, PyBrain randomly initialises the network weights. How can I keep this randomness consistent, i.e. if nothing changes then I should get the same output each time I run the network? Then I can be certain that any improvement gained is a direct result of the parameter altered.
I looked at this answer which recommends using NetworkWriter but I don't think this is really what I want.
I thought there would be some way of just seeding the network the same away each time I run it, but perhaps I'm mistaken.
You can initialize the network weights by passing it an array of weight values. This is best shown in this answer:
https://stackoverflow.com/a/14206213/5288735
If you want the weights to have "consistent randomness" you can create your array of weight vectors using random.seed(). Implementing this properly will generate random values that will be the same for each seed value. This will allow your network to have random weight values that are consistent.
Related
I've started working on Forward and back propagation of neural networks. I've coded it as-well and works properly too. But i'm confused in the algorithm itself. I'm new to Neural Networks.
So Forward propagation of neural networks is finding the right label with the given weights?
and Back-propagation is using forward propagation to find the most error free parameters by minimizing cost function and using these parameters to help classify other training examples? And this is called a trained Neural Network?
I feel like there is a big blunder in my concept if there is please let me know where i'm wrong and why i am wrong.
I will try my best to explain forward and back propagation in a detailed yet simple to understand manner, although it's not an easy topic to do.
Forward Propagation
Forward propagation is the process in a neural network where-by during the runtime of the network, values are fed into the front of the neural network, (the inputs). You can imagine that these values then travel across the weights which multiply the original value from the inputs by themselves. They then arrive at the hidden layer (neurons). Neurons vary quite a lot based on different types of networks, but here is one way of explaining it. When the values reach the neuron they go through a function where every single value being fed into the neuron is summed up and then fed into an activation function. This activation function can be very different depending on the use-case but let's take for example a linear activation function. It essentially gets the value being fed into it and then it rounds it to a 0 or 1. It is then fed through more weights and then it is spat out into the outputs. Which is the last step into the network.
You can imagine this network with this diagram.
Back Propagation
Back propagation is just like forward propagation except we work backwards from where we were in forward propagation.
The aim of back propagation is to reduce the error in the training phase (trying to get the neural network as accurate as possible). The way this is done is by going backwards through the weights and layers. At each weight the error is calculated and each weight is individually adjusted using an optimization algorithm; optimization algorithm is exactly what it sounds like. It optimizes the weights and adjusts their values to make the neural network more accurate.
Some optimization algorithms include gradient descent and stochastic gradient descent. I will not go through the details in this answer as I have already explained them in some of my other answers (linked below).
The process of calculating the error in the weights and adjusting them accordingly is the back-propagation process and it is usually repeated many times to get the network as accurate as possible. The number of times you do this is called the epoch count. It is good to learn the importance of how you should manage epochs and batch sizes (another topic), as these can severely impact the efficiency and accuracy of your network.
I understand that this answer may be hard to follow, but unfortunately this is the best way I can explain this. It is expected that you might not understand this the first time you read it, but remember this is a complicated topic. I have a linked a few more resources down below including a video (not mine) that explains these processes even better than a simple text explanation can. But I also hope my answer may have resolved your question and have a good day!
Further resources:
Link 1 - Detailed explanation of back-propagation.
Link 2 - Detailed explanation of stochastic/gradient-descent.
Youtube Video 1 - Detailed explanation of types of propagation.
Credits go to Sebastian Lague
I am coding a simple Neural Network, but I have thought of one issue that is bothering me.
This NN is for finding categories in the input. To better understand this, say the categories are "the numbers" (0,1,2...9).
To implement this the output layer is 10 nodes. Say I train this NN with several input -output pairs and save the learned weights somewhere. As the learning process takes quite a lot of time, after that I go and take a break. Come fresh the next day and re-start learning with new input -output pairs. So fair so goo
But what happen if on that time, I decide that I want to recognize hexadecimals (0,1,...9,A,B,,,E,F)... ergo the categories are increasing.
I suspect that would imply changing the structure of the NN and therefore I should retrain the NN from scratch.
Is this so?
Any comment, advice or your share of experience will be greatly appreciated
EDIT: This question has been marked as duplicate. I read the other question and although similar, my question is more concrete. While the other question speaks in generalities and the answer also is quite general- mine is very concrete as I use an example:
If I train a NN to recognize decimal numbers and later on decide to add data to make it recognize hexadecimals, can this be possible? How? Do I have to retrain the whole NN? In other words, does the structure of the NN needs to stay stationary with 10 OR 16 outputs since the beginning?
I would very much appreciate for a concrete answer to this. Thanks
A few considerations
Your training set and testing set should have the same distribution
Unless you have some way of specifying sample weights like some algorithms can you should at all costs avoid training on biased data. This is true for machine learning in general, not only neural networks.
Resuming training from a previous session is equivalent of using good initial values
Technically, you're just using the previous network as initial value instead of a random value. You should keep training in the whole dataset as always, to avoid a biased network.
Short Answer
Yes, you should always retrain your network if by retrain, you mean doing a training routine with the full dataset.
If you just mean retrain as doing a really long training iteration, it isn't your choice anyway. You must always train the network until the training error and testing error (or cross validated error) converge. If you reuse the previously trained network, that will probably happen faster.
You see, this is true no matter what kind of model change. If you change the network architecture, or the dataset, or both (your example), or some other parameter.
Of course, if you change the network architecture, you're going to have a bit of trouble on reusing the previous network. You could reuse the learned parameters from nodes that were kept and randomly initialize the parameters for the new nodes.
This is an on-going venture and some details are purposefully obfuscated.
I have a box that has several inputs and one output. The output voltage changes as the input voltages are changed. The desirability of the output sequence cannot be evaluated until many states pass and a look back process is evaluated.
I want to design a neural network that takes a number of outputs from the box as input and produce the correct input settings for the box to produce the optimal next output.
I cannot train this network using backpropagation. How do I train this network?
Genetic algorithm would be a good candidate here. A chromosome could encode the weights of the neural network. After evaluation you assign a fitness value to the chromosomes based on their performance. Chromosomes with higher fitness value have a higher chance to reproduce, helping to generate better performing chromosomes in the next generation.
Encoding the weights is a relatively simple solution, more complex ones could even define the topology of the network.
You might find some additional helpful information here:
http://en.wikipedia.org/wiki/Neuroevolution
Hillclimbing is the simplest optimization algorithm to implement. Just randomly modify the weights, see if it does better, if not reset them and try again. It's also generally faster than genetic algorithms. However it is prone to getting stuck in local optima, so try running it several times and selecting the best result.
I am trying to make a neural network for approximation of some unkown function (for my neural network course). The problem is that this function has very many variables but many of them are not important (for example in [f(x,y,z) = x+y] z is not important). How could I design (and learn) network for this kind of problem?
To be more specific the function is an evaluation function for some board game with unkown rules and I need to somehow learn this rules by experience of the agent. After each move the score is given to the agent so actually it needs to find how to get max score.
I tried to pass the neighborhood of the agent to the network but there are too many variables which are not important for the score and agent is finding very local solutions.
If you have a sufficient amount of data, your ANN should be able to ignore the noisy inputs. You also may want to try other learning approaches like scaled conjugate gradient or simple heuristics like momentum or early stopping so your ANN isn't over learning the training data.
If you think there may be multiple, local solutions, and you think you can get enough training data, then you could try a "mixture of experts" approach. If you go with a mixture of experts, you should use ANNs that are too "small" to solve the entire problem to force it to use multiple experts.
So, you are given a set of states and actions and your target values are the score after the action is applied to the state? If this problem gets any hairier, it will sound like a reinforcement learning problem.
Does this game have discrete actions? Does it have a discrete state space? If so, maybe a decision tree would be worth trying?
How do I approach the problem with a neural network and a intrusion detection system where by lets say we have an attack via FTP.
Lets say some one attempts to continuously try different logins via brute force attack on an ftp account.
How would I set the structure of the NN? What things do I have to consider? How would it recognise "similar approaches in the future"?
Any diagrams and input would be much appreciated.
Your question is extremely general and a good answer is a project in itself. I recommend contracting someone with experience in neural network design to help come up with an appropriate model or even tell you whether your problem is amenable to using a neural network. A few ideas, though:
Inputs need to be quantized, so start by making a list of possible numeric inputs that you could measure.
Outputs also need to be quantized and you probably can't generate a simple "Yes/no" response. Most likely you'll want to generate one or more numbers that represent a rough probability of it being an attack, perhaps broken down by category.
You'll need to accumulate a large set of training data that has been analyzed and quantized into the inputs and outputs you've designed. Figuring out the process of doing this quantization is a huge part of the overall problem.
You'll also need a large set of validation data, which should be quantized in the same way as the training data, but that should not take any part in the training, as otherwise you will simply force a correlation network that may well be completely meaningless.
Once you've completed the above, you can think about how you want to structure your network and the specific algorithms you want to use to train it. There is a wide range of literature on this topic, but, honestly, this is the simpler part of the problem. Representing the problem in a way that can be processed coherently is much more difficult.