Efficient storage of UNICODED text for processing with Blaze/Pandas - postgresql

I have about 5 million (& growing) rows of twitter feed and I want to store them efficiently for faster read / write access using Pandas (Preferably Blaze). From that huge metadata of a single tweet, I am just storing [username, tweet time, tweet & tweet ID]. So it's not much. Also, all the tweets are unicode encoded. Now what's the best way to store this data? I am currently storing them in a bunch of CSVs but I don't find it as a viable solution as the data grows and hence plan to move to a DB. I first thought of HDF5 but it still has issues storing unicoded columns (even in Python 3).
Since Blaze has excellent support for databases (& I think is great for analytics too), may I know what can be a good architectural solution (at production level, if possible) to my problem? As my data is also structured, I don't feel the need for a NoSQL solution but am open to suggestions.
Currently, those 5 MM rows occupy only about 1 GB of space and I don't think it will ever cross a few tens of GB. So, is using Postgres, the best idea?
Thanks

Yes, PostgresSQL is a perfectly fine choice for your 10s of GB application. I've had an easy time using sqlalchemy with the psycopg2 driver, and the psql command line tool is fine.
There is an incredible command-line interface to PostgresSQL called pgcli that offers tab-completion for table and column names. I highly recommend it, and just this tool might be enough to push you to use PostgresSQL.

Related

Database design: Postgres or EAV to hold semi-structured data

I was given the task to decide whether our stack of technologies is adequate to complete the project we have at hand or should we change it (and to which technologies exactly).
The problem is that I'm just a SQL Server DBA and I have a few days to come up with a solution...
This is what our client wants:
They want a web application to centralize pharmaceutical researches separated into topics, or projects, in their jargon. These researches are sent as csv files and they are somewhat structured as follows:
Project (just a name for the project)
Segment (could be behavioral, toxicology, etc. There is a finite set of about 10 segments. Each csv file holds a segment)
Mandatory fixed fields (a small set of fields that are always present, like Date, subjects IDs, etc. These will be the PKs).
Dynamic fields (could be anything here, but always as a key/pair value and shouldn't be more than 200 fields)
Whatever files (images, PDFs, etc.) that are associated with the project.
At the moment, they just want to store these files and retrieve them through a simple search mechanism.
They don't want to crunch the numbers at this point.
98% of the files have a couple of thousand lines, but there's a 2% with a couple of million rows (and around 200 fields).
This is what we are developing so far:
The back-end is SQL 2008R2. I've designed EAVs for each segment (before anything please keep in mind that this is not our first EAV design. It worked well before with less data.) and the mid-tier/front-end is PHP 5.3 and Laravel 4 framework with Bootstrap.
The issue we are experiencing is that PHP chokes up with the big files. It can't insert into SQL in a timely fashion when there's more than 100k rows and that's because there's a lot of pivoting involved and, on top of that, PHP needs to get back all the fields IDs first to start inserting. I'll explain: this is necessary because the client wants some sort of control on the fields names. We created a repository for all the possible fields to try and minimize ambiguity problems; fields, for instance, named as "Blood Pressure", "BP", "BloodPressure" or "Blood-Pressure" should all be stored under the same name in the database. So, to minimize the issue, the user has to actually insert his csv fields into another table first, we called it properties table. This action won't completely solve the problem, but as he's inserting the fields, he's seeing possible matches already inserted. When the user types in blood, there's a panel showing all the fields already used with the word blood. If the user thinks it's the same thing, he has to change the csv header to the field. Anyway, all this is to explain that's not a simple EAV structure and there's a lot of back and forth of IDs.
This issue is giving us second thoughts about our technologies stack choice, but we have limitations on our possible choices: I only have worked with relational DBs so far, only SQL Server actually and the other guys know only PHP. I guess a MS full stack is out of the question.
It seems to me that a non-SQL approach would be the best. I read a lot about MongoDB but honestly, I think it would be a super steep learning curve for us and if they want to start crunching the numbers or even to have some reporting capabilities,
I guess Mongo wouldn't be up to that. I'm reading about PostgreSQL which is relational and it's famous HStore type. So here is where my questions start:
Would you guys think that Postgres would be a better fit than SQL Server for this project?
Would we be able to convert the csv files into JSON objects or whatever to be stored into HStore fields and be somewhat queryable?
Is there any issues with Postgres sitting in a windows box? I don't think our client has Linux admins. Nor have we for that matter...
Is it's licensing free for commercial applications?
Or should we stick with what we have and try to sort the problem out with staging tables or bulk-insert or other technique that relies on the back-end to do the heavy lifting?
Sorry for the long post and thanks for your input guys, I appreciate all answers as I'm pulling my hair out here :)

Log viewing utility database choice

I will be implementing log viewing utility soon. But I stuck with DB choice. My requirements are like below:
Store 5 GB data daily
Total size of 5 TB data
Search in this log data in less than 10 sec
I know that PostgreSQL will work if I fragment tables. But will I able to get this performance written above. As I understood NoSQL is better choice for log storing, since logs are not very structured. I saw an example like below and it seems promising using hadoop-hbase-lucene:
http://blog.mgm-tp.com/2010/03/hadoop-log-management-part1/
But before deciding I wanted to ask if anybody did a choice like this before and could give me an idea. Which DBMS will fit this task best?
My logs are very structured :)
I would say you don't need database you need search engine:
Solr based on Lucene and it packages everything what you need together
ElasticSearch another Lucene based search engine
Sphinx nice thing is that you can use multiple sources per search index -- enrich your raw logs with other events
Scribe Facebook way to search and collect logs
Update for #JustBob:
Most of the mentioned solutions can work with flat file w/o affecting performance. All of then need inverted index which is the hardest part to build or maintain. You can update index in batch mode or on-line. Index can be stored in RDBMS, NoSQL, or custom "flat file" storage format (custom - maintained by search engine application)
You can find a lot of information here:
http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis
See which fits your needs.
Anyway for such a task NoSQL is the right choice.
You should also consider the learning curve, MongoDB / CouchDB, even though they don't perform such as Cassandra or Hadoop, they are easier to learn.
MongoDB being used by Craigslist to store old archives: http://www.10gen.com/presentations/mongodb-craigslist-one-year-later

Is there a way to configure Heroku PostgreSQL to not bother loading a particular column into RAM?

This may be a long shot, but I thought I'd ask anyway.
I am looking at using Heroku's new Crane Postgres DB (400 MB RAM Cache) in conjunction with an app I'm deploying on Heroku. The 400 MB cache size should be plenty for our needs... except for one column of one table, in which we store a cached PDF file as a string. The PDF's could easily use up the 400MB RAM pretty quickly if Heroku uses its Cache for them.
If I were on an actual server, I'd just store the PDF as a file, but given Heroku's ephemeral file system, my life is much simpler if I just store the pdf in the DB rather than rigging up a connection to S3 just for this one thing. (It further complicates that we're looking at deploying multiple heroku instances, one for each client ... so using the DB's is simpler than creating a new bucket for each one.) I don't really care about the speed on this. If people are getting the file, they will expect speeds as if it were coming from a file system anyhow, since thats how most file downloads are done. Is there any way to tell PostGRES to not bother caching this column?
Or maybe I'm asking the wrong question, and there is some other way to solve the problem or design alternatives that make it irrelevant.
You don't have to do anything. PostgreSQL will automatically use TOAST on values larger than 8 kB.
From http://www.postgresql.org/docs/9.1/static/storage-toast.html
PostgreSQL uses a fixed page size (commonly 8 kB), and does not allow tuples to span multiple pages. Therefore, it is not possible to store very large field values directly. To overcome this limitation, large field values are compressed and/or broken up into multiple physical rows. This happens transparently to the user, with only small impact on most of the backend code. The technique is affectionately known as TOAST (or "the best thing since sliced bread").
PostgreSQL caching is also done at the page level so TOAST does not have to be cached with the rest of the row (http://www.westnet.com/~gsmith/content/postgresql/InsideBufferCache.pdf).
The fact that Postgres can TOAST large field values, it doesn't mean it's the best thing to do.
If you store big fields in your main database, it will make many things harder, such as creating forks or followers, and creating and restoring backups in particular. I would strongly reconsider utilizing S3 to store the PDF files, and simply invest in automated onboarding of new clients (create heroku app, provision database, provision/create S3 bucket).
I'm not quite sure how you're managing to store large PDF's, since Postgres imposes a maximum field size (or at least a maximum page size). However, you might be able to get around this by using TOAST. TOASTed items are stored in a separate (physical) table, so if you're not selecting them frequently they shouldn't be cached.
If you are selecting them frequently, then I'm not sure if what you want is possible. Remember that Postgres only supplies one "level" of caching - the Linux VFS does caching also.

Storing millions of log files - Approx 25 TB a year

As part of my work we get approx 25TB worth log files annually, currently it been saved over an NFS based filesystem. Some are archived as in zipped/tar.gz while others reside in pure text format.
I am looking for alternatives of using an NFS based system. I looked at MongoDB, CouchDB. The fact that they are document oriented database seems to make it the right fit. However the log files content needs to be changed to JSON to be store into the DB. Something I am not willing to do. I need to retain the log files content as is.
As for usage we intend to put a small REST API and allow people to get file listing, latest files, and ability to get the file.
The proposed solutions/ideas need to be some form of distributed database or filesystem at application level where one can store log files and can scale horizontally effectively by adding more machines.
Ankur
Since you dont want queriying features, You can use apache hadoop.
I belive HDFS and HBase will be nice fit for this.
You can see lot of huge storage stories inside Hadoop powered by page
Take a look at Vertica, a columnar database supporting parallel processing and fast queries. Comcast used it to analyze about 15GB/day of SNMP data, running at an average rate of 46,000 samples per second, using five quad core HP Proliant servers. I heard some Comcast operations folks rave about Vertica a few weeks ago; they still really like it. It has some nice data compression techniques and "k-safety redundancy", so they could dispense with a SAN.
Update: One of the main advantages of a scalable analytics database approach is that you can do some pretty sophisticated, quasi-real time querying of the log. This might be really valuable for your ops team.
Have you tried looking at gluster? It is scalable, provides replication and many other features. It also gives you standard file operations so no need to implement another API layer.
http://www.gluster.org/
I would strongly disrecommend using a key/value or document based store for this data (mongo, cassandra, etc.). Use a file system. This is because the files are so large, and the access pattern is going to be linear scan. One thing problem that you will run into is retention. Most of the "NoSQL" storage systems use logical delete, which means that you have to compact your database to remove deleted rows. You'll also have a problem if your individual log records are small and you have to index each one of them - your index will be very large.
Put your data in HDFS with 2-3 way replication in 64 MB chunks in the same format that it's in now.
If you are to choose a document database:
On CouchDB you can use the _attachement API to attach the file as is to a document, the document itself could contain only metadata (like timestamp, locality and etc) for indexing. Then you will have a REST API for the documents and the attachments.
A similar approach is possible with Mongo's GridFs, but you would build the API yourself.
Also HDFS is a very nice choice.

Has anyone used an object database with a large amount of data?

Object databases like MongoDB and db4o are getting lots of publicity lately. Everyone that plays with them seems to love it. I'm guessing that they are dealing with about 640K of data in their sample apps.
Has anyone tried to use an object database with a large amount of data (say, 50GB or more)? Are you able to still execute complex queries against it (like from a search screen)? How does it compare to your usual relational database of choice?
I'm just curious. I want to take the object database plunge, but I need to know if it'll work on something more than a sample app.
Someone just went into production with a 12 terabytes of data in MongoDB. The largest I knew of before that was 1 TB. Lots of people are keeping really large amounts of data in Mongo.
It's important to remember that Mongo works a lot like a relational database: you need the right indexes to get good performance. You can use explain() on queries and contact the user list for help with this.
When I started db4o back in 2000 I didn't have huge databases in mind. The key goal was to store any complex object very simply with one line of code and to do that good and fast with low ressource consumption, so it can run embedded and on mobile devices.
Over time we had many users that used db4o for webapps and with quite large amounts of data, going close to todays maximum database file size of 256GB (with a configured block size of 127 bytes). So to answer your question: Yes, db4o will work with 50GB, but you shouldn't plan to use it for terabytes of data (unless you can nicely split your data over multiple db4o databases, the setup costs for a single database are negligible, you can just call #openFile() )
db4o was acquired by Versant in 2008, because it's capabilites (embedded, low ressource-consumption, lightweight) make it a great complimentary product to Versant's high-end object database VOD. VOD scales for huge amounts of data and it does so much better than relational databases. I think it will merely chuckle over 50GB.
MongoDB powers SourceForge, The New York Times, and several other large databases...
You should read the MongoDB use cases. People who are just playing with technology are often just looking at how does this work and are not at the point where they can understand the limitations. For the right sorts of datasets and access patterns 50GB is nothing for MongoDB running on the right hardware.
These non-relational systems look at the trade-offs which RDBMs made, and changed them a bit. Consistency is not as important as other things in some situations so these solutions let you trade that off for something else. The trade-off is still relatively minor ms or maybe secs in some situations.
It is worth reading about the CAP theorem too.
I was looking at moving the API I have for sure with the stack overflow iphone app I wrote a while back to MongoDB from where it currently sits in a MySQL database. In raw form the SO CC dump is in the multi-gigabyte range and the way I constructed the documents for MongoDB resulted in a 10G+ database. It is arguable that I didn't construct the documents well but I didn't want to spend a ton of time doing this.
One of the very first things you will run into if you start down this path is the lack of 32 bit support. Of course everything is moving to 64 bit now but just something to keep in mind. I don't think any of the major document databases support paging in 32 bit mode and that is understandable from a code complexity standpoint.
To test what I wanted to do I used a 64 bit instance EC2 node. The second thing I ran into is that even though this machine had 7G of memory when the physical memory was exhausted things went from fast to not so fast. I'm not sure I didn't have something set up incorrectly at this point because the non-support of 32 bit system killed what I wanted to use it for but I still wanted to see what it looked like. Loading the same data dump into MySQL takes about 2 minutes on a much less powerful box but the script I used to load the two database works differently so I can't make a good comparison. Running only a subset of the data into MongoDB was much faster as long as it resulted in a database that was less than 7G.
I think my take away from it was that large databases will work just fine but you may have to think about how the data is structured more than you would with a traditional database if you want to maintain the high performance. I see a lot of people using MongoDB for logging and I can imagine that a lot of those databases are massive but at the same time they may not be doing a lot of random access so that may mask what performance would look like for more traditional applications.
A recent resource that might be helpful is the visual guide to nosql systems. There are a decent number of choices outside of MongoDB. I have used Redis as well although not with as large of a database.
Here's some benchmarks on db4o:
http://www.db4o.com/about/productinformation/benchmarks/
I think it ultimately depends on a lot of factors, including the complexity of the data, but db4o seems to certainly hang with the best of them.
Perhaps worth a mention.
The European Space Agency's Planck mission is running on the Versant Object Database.
http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=46951
It is a satelite with 74 onboard sensors launched last year which is mapping the infrarred spectrum of the universe and storing the information in a map segment model. It has been getting a ton of hype these days because of it's producing some of the coolest images ever seen of the universe.
Anyway, it has generated 25T of information stored in Versant and replicated across 3 continents. When the mission is complete next year, it will be a total of 50T
Probably also worth noting, object databases tend to be a lot smaller to hold the same information. It is because they are truly normalized, no data duplication for joins, no empty wasted column space and few indexes rather than 100's of them. You can find public information about testing ESA did to consider storage in multi-column relational database format -vs- using a proper object model and storing in the Versant object database. THey found they could save 75% disk space by using Versant.
Here is the implementation:
http://www.planck.fr/Piodoc/PIOlib_Overview_V1.0.pdf
Here they talk about 3T -vs- 12T found in the testing
http://newscenter.lbl.gov/feature-stories/2008/12/10/cosmic-data/
Also ... there are benchmarks which show Versant orders of magnitude faster on the analysis side of the mission.
CHeers,
-Robert