I'd like to create a function that will iterate over an array (or collection or sequence). Then I will call that function with an array, and the reversed version of the array (but efficiently: without creating a new array to hold the reverse).
If I do this:
func doIteration(points: [CGPoint]) {
for p in points {
doSomethingWithPoint(p)
}
// I also need random access to points
doSomethingElseWithPoint(points[points.count-2]) // ignore obvious index error
}
And if I have this:
let points : [CGPoint] = whatever
I can do this just fine:
doIteration(points)
But then if I do this:
doIteration(points.reverse())
I get 'Cannot convert value of type 'ReverseRandomAccessCollection<[CGPoint]> to expected argument type [_]'
Now, I DON'T want to do this:
let reversedPoints : [CGPoint] = points.reverse()
doIteration(reversedPoints)
even though it will work, because that will (correct me if I'm wrong) create a new array, initializing it from the ReverseRandomAccessCollection returned by reverse().
So I guess I'd like to write my doIteration function to take some sort of sequence type, so I can pass in the result of reverse() directly, but ReverseRandomAccessCollection doesn't conform to anything at all. I think I'm missing something - what's the accepted pattern here?
If you change your parameter's type to a generic, you should get the functionality you need:
func doIteration
<C: CollectionType where C.Index: RandomAccessIndexType, C.Generator.Element == CGPoint>
(points: C) {
for p in points {
doSomethingWithPoint(p)
}
doSomethingElseWithPoint(points[points.endIndex - 2])
}
More importantly, this won't cause a copy of the array to be made. If you look at the type generated by the reverse() method:
let points: [CGPoint] = []
let reversed = points.reverse() // ReverseRandomAccessCollection<Array<__C.CGPoint>>
doIteration(reversed)
You'll see that it just creates a struct that references the original array, in reverse. (although it does have value-type semantics) And the original function can accept this new collection, because of the correct generic constraints.
You can do this
let reversedPoints : [CGPoint] = points.reverse()
doIteration(reversedPoints)
or this
doIteration(points.reverse() as [CGPoint])
but I don't think there is any real difference by the point of view of a the footprint.
Scenario 1
let reversedPoints : [CGPoint] = points.reverse()
doIteration(reversedPoints)
Infact in this case a new Array containing references to the CGPoint(s) present in the original array is created. This thanks to the Copy-on-write mechanism that Swift used to manage structures.
So the memory allocated is the following:
points.count * sizeOf(pointer)
Scenario 2
On the other hand you can write something like this
doIteration(points.reverse() as [CGPoint])
But are you really saving memory? Let's see.
A temporary variable is created, that variable is available inside the scope of the function doIteration and requires exactly a pointer for each element contained in points so again we have:
points.count * sizeOf(pointer)
So I think you can safely choose one of the 2 solutions.
Considerations
We should remember that Swift manages structures in a very smart way.
When I write
var word = "Hello"
var anotherWord = word
On the first line Swift create a Struct and fill it with the value "Hello".
On the second line Swift detect that there is no real reason to create a copy of the original String so writes inside the anotherWord a reference to the original value.
Only when word or anotherWord is modified Swift really create a copy of the original value.
Related
If you have a collection type in Swift (like a Set<T>) then you can remove something from the set like...
var s = // some set
s.remove(someElement)
and it will mutate s and remove the someElement from it.
However, this is a mutating function.
Is there a non-mutating function that would return a new set? Like...
let smallerSet = largerSet.removing(someElement)
I could use filter but then it turns this from a O(1) into an O(n) time problem.
If there isn't one already I can write one myself. Is there a convention for the name of a non-mutating function like this?
You can use subtracting function of the Set. For that you need to put that element to be deleted in another Set.
let elementToBeDeleted = Set(arrayLiteral: 1)
var wholeSet = Set(arrayLiteral: 1,2,3)
wholeSet = wholeSet.subtracting(element)
print(wholeSet) //This would print [2,3].
Hope this what you need to get things done.
There are some similar methods in Swift. They look similar, actually their functions are also similar. They are:
popFirst(), popLast(), dropFirst(), dropLast(), removeFirst(), removeLast()
Especially popFirst() and removeFirst(), according to Apple doc:
func popFirst()
Removes and returns the first element of the collection.
func removeFirst()
Removes and returns the first element of the collection.
Their document descriptions are totally same. Actually I tried a lot (a whole page in playground) to see whether there are some significant differences between these methods. The answer is there are some very small differences between some methods, and some methods are totally the same according to my test.
Some methods, popFirst(), popLast() and dropLast(), dropFirst() are different when used on String and Array. But according to my test, they all can be replaced by removeFirst() and removeLast() (despite there are some tiny differences).
So my question is why Swift has to keep these similar methods. Is it kind of redundant?
Although Apple did not make it easy to find, it does mention that pop returns nil for an empty collection, and that remove throws an error when there is nothing to remove.
However, you should be able to tell the same from the signatures of these functions:
popFirst returns an optional, which implies that you can pop first element even from an empty collection
removeFirst, on the other hand, is not optional. Signatures like that imply that it is an error to call this method in a state when it cannot return a value.
This could be easily confirmed using a playground:
var test1 = Set<String>(["a", "b"])
let x1 = test1.popFirst()
let y1 = test1.popFirst()
let z1 = test1.popFirst() // returns nil
var test2 = Set<String>(["a", "b"])
let x2 = test2.removeFirst()
let y2 = test2.removeFirst()
let z2 = test2.removeFirst() // Throws an error
This question has been asked and answered for a couple other coding languages, but I think I may have a unique problem anyway. So, I want to duplicate a three dimensional array (filled with arbitrary objects). I believe I found that this:
var duplicateArray = originalArray
Does not work, since, for whatever reason, they thought it would a nice safety measure to have this create a duplicate array, but filled with pointers as sub-arrays instead of duplicating the sub-arrays as well. This seems like a strange design choice, since if duplicateArray and originalArray were one-dimensional, this would work as intended. Anyway, so I tried this (where object is some arbitrary object):
var duplicateArray = [[[object]]]()
for x in 0..<originalArray.count {
var tempArrYZ = [[object]]()
for y in 0..<originalArray[x].count {
var tempArrZ = [object]()
for z in 0..<originalArray[x][y].count {
let copiedObj = originalArray[x][y][z]
tempArrZ.append(copiedObj)
}
tempArrYZ.append(tempArrZ)
}
duplicateArray.append(tempArrYZ)
}
This still does not work; all the values in duplicateArray will act like a pointer for their values in originalArray. Perhaps someone has a simple way of deeply duplicating multidimensional arrays, or perhaps someone can find my error?
EDIT: How is this a duplicate of that other question? I'm asking specifically how to "deeply" duplicate. The question that's being referred to nebulously asked about duplicating arrays.
var duplicateArray = originalArray
Would work if the objects are not of reference type. However, for the reference type you need to actually create the copy of the object with copy. Your original code was pretty close.
var duplicateArray = [[[object]]]()
for x in 0..<originalArray.count {
var tempArrYZ = [[object]]()
for y in 0..<originalArray[x].count {
var tempArrZ = [object]()
for z in 0..<originalArray[x][y].count {
let copiedObj = originalArray[x][y][z].copy()
tempArrZ.append(copiedObj)
}
tempArrYZ.append(tempArrZ)
}
duplicateArray.append(tempArrYZ)
}
As already stated, your problem isn't really the copying of the array, it's the copying of Objects. Arrays, like all structs, are copied by value. Objects are copied by reference.
When you copy an array of objects, it's a brand new array with brand new references to the contained objects. Your code is simply creating additional references to the same objects then organizing them in a similar fashion.
Anyway, here's my simpler/functional implementation for copying arrays:
func copyArrayWithObjects <T: Copying>(items: [T]) -> [T]{
return items.map { $0.copy() }
}
func copy2DArrayWithObjects <T: Copying>(items: [[T]]) -> [[T]] {
return items.map(copyObjectsInArray)
}
func copy3DArrayWithObjects<T: Copying>(items: [[[T]]]) -> [[[T]]] {
return items.map(copy2DObjectInArray)
}
Then you can simply do this:
let copiedArray = copy3DArrayWithObjects(originalArray)
Theoretically I think it's possible to create a function to do this for an n-dimension array, but I haven't found a solution yet.
I think it would be best to write an extension on Array that adds conformance to NSCopying, which recursively copies the elements. This solution would be very elegant because it could scale to any number of dimmensions.
Swift arrays are value types so the snippet you provided is fine.
var duplicateArray = originalArray
See this example in a Playground as proof:
var array = [[["test"]]]
var newarray = array
// print different memory addresses
print(unsafeAddressOf(array[0][0][0])) // 0x00007ff7a302a760
print(unsafeAddressOf(newarray[0][0][0])) // 0x00007ff7a33000e0
If you use NSArray or reference types inside the Swift array, then they will no longer copy implicitly and will be treated with the same address - this can also be proved in the Playground. You would need to call copy() explicitly on reference types.
Why does this even compile? What is the need for an empty subscript which obviously behaves like a function without parameters?
extension Array {
subscript() -> Int {
return 0
}
}
let array = [1,3,2]
print(array[]) // "0"
Note that it can also be used for an assignment, so it behaves like a computed property named [].
Why does this even compile
It compiles because you defined an empty-subscript extension to Array:
extension Array {
subscript() -> Int {
return 0
}
}
Array already has a subscript defined, whereby you supply an index number and get back the element at that index. This extension adds another subscript, whereby you supply nothing and get back the number zero.
Without that extension, this would not compile:
let array = [1,3,2]
print(array[])
What is the need for an empty subscript which obviously behaves like a function without parameters
There's no "need"; it's a convenience. You could, after all, make exactly the same "objection" to subscripts in general! They do nothing that you cannot accomplish by methods. In fact, such methods exist; the subscript notation is merely a pleasant piece of syntactic sugar.
I'm trying to implement a basic multimap in Swift. Here's a relevant (non-functioning) snippet:
class Multimap<K: Hashable, V> {
var _dict = Dictionary<K, V[]>()
func put(key: K, value: V) {
if let existingValues = self._dict[key] {
existingValues += value
} else {
self._dict[key] = [value]
}
}
}
However, I'm getting an error on the existingValues += value line:
Could not find an overload for '+=' that accepts the supplied arguments
This seems to imply that the value type T[] is defined as an immutable array, but I can't find any way to explicitly declare it as mutable. Is this possible in Swift?
The problem is that you are defining existingValues as a constant with let. However, I would suggest changing the method to be:
func put(key: K, value: V) {
var values = [value]
if let existingValues = self._dict[key] {
values.extend(existingValues)
}
self._dict[key] = values
}
}
I feel that the intent of this is clearer as it doesn't require modifying the local array and reassigning later.
if var existingValues = self._dict[key] { //var, not let
existingValues += value;
// should set again.
self._dict[key] = existingValues
} else {
self._dict[key] = [value]
}
Assignment and Copy Behavior for Arrays
The assignment and copy behavior for Swift’s Array type is more complex than for its Dictionary type. Array provides C-like performance when you work with an array’s contents and copies an array’s contents only when copying is necessary.
If you assign an Array instance to a constant or variable, or pass an Array instance as an argument to a function or method call, the contents of the array are not copied at the point that the assignment or call takes place. Instead, both arrays share the same sequence of element values. When you modify an element value through one array, the result is observable through the other.
For arrays, copying only takes place when you perform an action that has the potential to modify the length of the array. This includes appending, inserting, or removing items, or using a ranged subscript to replace a range of items in the array. If and when array copying does take place, the copy behavior for an array’s contents is the same as for a dictionary’s keys and values, as described in Assignment and Copy Behavior for Dictionaries.
See: https://itunes.apple.com/us/book/the-swift-programming-language/id881256329?mt=11
Buckets is a data structures library for swift. It provides a multimap and allows subscript notation.
One easy way to implement a multi-map is to use a list of pairs (key, value) sorted by key, using binary search to find ranges of entries. This works best when you need to get a bunch of data, all at once. It doesn't work so well when you are constantly deleting and inserting elements.
See std::lower_bound from C++ for a binary search implementation which can be easily written in swift.