matlab scatter3 plot real and imaginary parts over frequency - matlab

I've got to vectors called ttre and ttim which contain real and imaginary data over a frequency (from 1 to 64). The fields are looking like this:
ttim 64x10100 single
ttre 64x10100 single
I can easily make a 2D scatter plot of a certain row by using the command
scatter(ttim(40,:),ttre(40,:))
Now, I would like to display all data in a 3D scatter plot where X=real values, Y=imaginary values and Z=[1...64]
I created an array for Z with the number 1 to 64 and copied it to make it the same size as the other variables, by:
z=(1:64)'
z=repmat(z,1,10100)
result:
z 64x10100 double
When I try to plo a 3D scatter plot now, I get the error "Vectors x,yu,z must be of the same size"...however, as far as I understand, they are of the same size.
>> scatter3(ttim,ttre,z)
Error using scatter3 (line 64)
X, Y and Z must be vectors of the same length.
I hope that someone could point me into the right direction here.
Kind regards

scatter3 needs points to plot, so x,yand z should be 1xN , where N is the amount of points your are plotting. I dont know what your data is, so unfortunately I can not help more. Maybe scatter3(ttim(:),ttre(:),z(:)) works, but I do not recommend it for the huge amount of data you have, it may crash your computer.
However, maybe z=1:64 is not the best option. It means that you will have 64 layers (like floors from a building) of scattered data, not sure if that's what you want.

Related

How to apply a moving median filter on a time series of 2D scans in Matlab?

I have a huge set of data of a timelapse of 2D laser scans of waves running up and down stairs (see fig.1fig.2fig.3).
There is a lot of noise in the scans, since the water splashes a lot.
Now I want to smoothen the scans.
I have 2 questions:
How do I apply a moving median filter (as recommended by another study dealing with a similar problem)? I can only find instructions for single e.g. (x,y) or (t,y) plots but not for x and y values that vary over time. Maybe an average filter would do it as well, but I do not have a clue on that either.
The scanner is at a fixed point (222m) so all the data spikes point towards that point at the ceiling. Is it possible or necessary to include this into the smoothing process?
This is the part of the code (I hope it's enough to get it):
% Plot data as real time profile
x1=data.x;y1=data.y;
t=data.t;
% add moving median filter here?
h1=plot(x1(1,:),y1(1,:));
axis([210 235 3 9])
ht=title('Scanner data');
for i=1:1:length(t);
set(h1,'XData',x1(i,:),'YData',y1(i,:));set(ht,'String',sprintf('t = %5.2f
s',data.t(i)));pause(.01);end
The data.x values are stored in a (mxn) matrix in which the change in time is arranged vertically and the x values i.e. "laser points" of the scanner are horizontally arranged. The data.y is stored in the same way. The data.t values are stored in a (mx1) matrix.
I hope I explained everything clearly and that somebody can help me. I am already pretty desperate about it... If there is anything missing or confusing, please let me know.
If you're trying to apply a median filter in the x-y plane, then consider using medfilt2 from the Image Processing Toolbox. Note that this function only accepts 2-D inputs, so you'll have to loop over the third dimension.
Also note that medfilt2 assumes that the x and y data are uniformly spaced, so if your x and y data don't fall onto a uniformly spaced grid you may have to manually loop over indices, extract the corresponding patches, and compute the median.
If you can/want to apply an averaging filter instead of a median filter, and if you have uniformly spaced data, then you can use convn to compute a k x k moving average by doing:
y = convn(x, ones(k,k)/(k*k), 'same');
Note that you'll get some bias on the boundaries because you're technically trying to compute an average of k^2 pixels when you have less than that number of values available.
Alternatively, you can use nested calls to movmean since the averaging operation is separable:
y = movmean(movmean(x, k, 2), k, 1);
If your grid is separable, but not uniform, you can still use movmean, just use the SamplePoints name-value pair:
y = movmean(movmean(x, k, 2, 'SamplePoints', yv), k, 1, 'SamplePoints', xv);
You can also control the endpoint handling in movmean with the Endpoints name-value pair.

i have 100*100 matrix, how can i make plot3 graph?

I have a 100 x 100 matrix and i have to use plot3 in MATLAB environment to graph this data. I tried plot3(matrix name) but I faced this error "not enough input arguments". I think plot3 needs 3 input arguments, but I only have this matrix of data. could anyone help me to solve this problem? Is there any alternative for plot3 when we don't have enough arguments?
I need a graph like this:
I think you want to plot the values in a figure as a sort of surface element. What you can do then is:
[X,Y] = size(matrix);
figure;
surface(1:X,1:Y,matrix);
What this does is that it creates a vector for both X and Y indices, as possible in surface. The X and Y indices are obtained by setting them as integers from 1:size, so basically you assign the location of each matrix element to an index.
Note that you can strictly speaking use surface(matrix) as well, but the former approach allows you to use custom indexing, as long as the lengths of the vectors X and Y are the same as the size of your matrix.
For the waterfall use:
figure;
waterfall(matrix);
Sample code:
A=rand(100);
figure;
waterfall(1:100,1:100,A);
Gives:
where you can play around with the name-value pairs, see the documentation on that.
I think what you need is mesh or surf instead of plot3.
plot3 draws a line in 3d-space, so it will need three vectors of the same length (one for each dimension).
When you have a matrix, one reasonable way of displaying it is as a surface in 3d space, which is done by the functions mesh and surf.
Try it out! I hope i helps!

3-D Plotting with MATLAB for Galton's Skewness and Moor's Kurtosis

I know there are many plotting documents for Matlab online and I am pretty sure that it has been asked many times. I aplogize in advance for any inconvenience.
I am dealing with a new distribution and I need to draw 3D plot for different values of parameters (I can do it with Excel or any other programs, however, since my other graphs is drawn with MATLAB, and I need to put this 3D in Matlab, too, to publish it as an article). I calculated the result using MATLAB loops, however, plotting gives me the hardest time. I had no other choice but to ask for your assistance. I have these equations for different alphas and betas with a constant sigma and calculate Galton's Skewness and Moor's Kurtosis given with the last two equations.
median=sqrt(2*(sigma^2)*beta*gammaincinv(0.5,alpha));
q1=sqrt(2*(sigma^2)*beta*gammaincinv((6/8),alpha));
q3=sqrt(2*(sigma^2)*beta*gammaincinv((2/8),alpha));
q4=sqrt(2*(sigma^2)*beta*gammaincinv((7/8),alpha));
q5=sqrt(2*(sigma^2)*beta*gammaincinv((5/8),alpha));
q6=sqrt(2*(sigma^2)*beta*gammaincinv((3/8),alpha));
q7=sqrt(2*(sigma^2)*beta*gammaincinv((1/8),alpha));
galtonskewness=(q1-2*median+q3)/(q1-q3);
moorskurtosis=(q4-q5+q6-q7)/(q1-q3);
Let's assume that,
sigma=1
beta=[0.1 0.2 0.5 1 2 5];
alpha=[0.1 0.2 0.5 1 2 5];
I have used mesh(X,Y,Z) for the same range of alphas and betas with the same increment but I take the error "these values cannot be complex". I just want to draw something like the one below.
It must be something easy that I am missing out, but I do not understand where the mistake is. I appreciate any help. Thank you!
I ran the above code for a 2D mesh of points for alpha and beta between 0.1 and 5 for both dimensions and I got results for both.
I suspect it's due to your alpha and beta declaration. You are only providing a few points, and if you try to use mesh, it won't get good results. Therefore, define a meshgrid of points for both alpha and beta, then vectorize your MATLAB code to produce the kurotsis and skewness curves. Only under certain situations should you use for loops. In general, you should avoid using them whenever possible.
How meshgrid works is that given a range of X and Y values, it will produce two (or three if you want 3D co-ordinates) arrays where each location in each array gives you the spatial co-ordinate at that particular location. Therefore, if we did something like:
[X,Y] = meshgrid(1:3, 1:3);
This is what we get:
X =
1 2 3
1 2 3
1 2 3
Y =
1 1 1
2 2 2
3 3 3
Notice that in a 2D grid, for the top-left corner, (x,y) = (1,1), and so for the corresponding location in X, we get 1 and Y we get 1. If you do the same logic for any other position in the 2D grid, you simply look at the X and Y values in each array and it will tell you what the component is for each dimension.
As such, instead of looping through all possible points in your grid, generate them all using meshgrid, then vectorize the computation by calculating your values all at once rather than individually. Once you do this, you have the right structure to be able to put this into mesh.
Therefore, try doing this instead:
%// Define meshgrid of points
[alpha,beta] = meshgrid(0.1:0.1:5, 0.1:0.1:5);
%// From your code
sigma = 1;
%// Calculate quantities - Notice that this is all vectorized
med=sqrt(2*(sigma^2)*beta.*gammaincinv(0.5,alpha));
q1=sqrt(2*(sigma^2)*beta.*gammaincinv((6/8),alpha));
q3=sqrt(2*(sigma^2)*beta.*gammaincinv((2/8),alpha));
q4=sqrt(2*(sigma^2)*beta.*gammaincinv((7/8),alpha));
q5=sqrt(2*(sigma^2)*beta.*gammaincinv((5/8),alpha));
q6=sqrt(2*(sigma^2)*beta.*gammaincinv((3/8),alpha));
q7=sqrt(2*(sigma^2)*beta.*gammaincinv((1/8),alpha));
galtonskewness=(q1-2*med+q3)./(q1-q3);
moorskurtosis=(q4-q5+q6-q7)./(q1-q3);
%// Show our meshes
figure;
mesh(alpha, beta, galtonskewness);
figure;
mesh(alpha, beta, moorskurtosis);
Also take note that I renamed your median variable to med. MATLAB has a function called median and so you don't want to unintentionally shadow over this function with a variable of the same name.
This is what I get:
Take note that I'm not getting the plots that you have placed in your post. It may be because I'm choosing the wrong variables to define the mesh, or perhaps your equations may be incorrect. Double check what you know in theory to what you have here in code and try again.
This should hopefully give you enough to start with though!

matlab: cdfplot of relative error

The figure shown above is the plot of cumulative distribution function (cdf) plot for relative error (attached together the code used to generate the plot). The relative error is defined as abs(measured-predicted)/(measured). May I know the possible error/interpretation as the plot is supposed to be a smooth curve.
X = load('measured.txt');
Xhat = load('predicted.txt');
idx = find(X>0);
x = X(idx);
xhat = Xhat(idx);
relativeError = abs(x-xhat)./(x);
cdfplot(relativeError);
The input data file is a 4x4 matrix with zeros on the diagonal and some unmeasured entries (represent with 0). Appreciate for your kind help. Thanks!
The plot should be a discontinuous one because you are using discrete data. You are not plotting an analytic function which has an explicit (or implicit) function that maps, say, x to y. Instead, all you have is at most 16 points that relates x and y.
The CDF only "grows" when new samples are counted; otherwise its value remains steady, just because there isn't any satisfying sample that could increase the "frequency".
You can check the example in Mathworks' `cdfplot1 documentation to understand the concept of "empirical cdf". Again, only when you observe a sample can you increase the cdf.
If you really want to "get" a smooth curve, either 1) add more points so that the discontinuous line looks smoother, or 2) find any statistical model of whatever you are working on, and plot the analytic function instead.

Interpolating irregularly spaced 3D matrix in matlab

I have a time series of temperature profiles that I want to interpolate, I want to ask how to do this if my data is irregularly spaced.
Here are the specifics of the matrix:
The temperature is 30x365
The time is 1x365
Depth is 30x1
Both time and depth are irregularly spaced. I want to ask how I can interpolate them into a regular grid?
I have looked at interp2 and TriScatteredInterp in Matlab, however the problem are the following:
interp2 works only if data is in a regular grid.
TriscatteredInterp works only if the vectors are column vectors. Although time and depth are both column vectors, temperature is not.
Thanks.
Function Interp2 does not require for a regularly spaced measurement grid at all, it only requires a monotonic one. That is, sampling positions stored in vectors depths and times must increase (or decrease) and that's all.
Assuming this is indeed is the situation* and that you want to interpolate at regular positions** stored in vectors rdepths and rtimes, you can do:
[JT, JD] = meshgrid(times, depths); %% The irregular measurement grid
[RT, RD] = meshgrid(rtimes, rdepths); %% The regular interpolation grid
TemperaturesOnRegularGrid = interp2(JT, JD, TemperaturesOnIrregularGrid, RT, RD);
* : If not, you can sort on rows and columns to come back to a monotonic grid.
**: In fact Interp2 has no restriction for output grid (it can be irregular or even non-monotonic).
I would use your data to fit to a spline or polynomial and then re-sample at regular intervals. I would highly recommend the polyfitn function. Actually, anything by this John D'Errico guy is incredible. Aside from that, I have used this function in the past when I had data on a irregularly spaced 3D problem and it worked reasonably well. If your data set has good support, which I suspect it does, this will be a piece of cake. Enjoy! Hope this helps!
Try the GridFit tool on MATLAB central by John D'Errico. To use it, pass in your 2 independent data vectors (time & temperature), the dependent data matrix (depth) along with the regularly spaced X & Y data points to use. By default the tool also does smoothing for overlapping (or nearly) data points. If this is not desired, you can override this (and other options) through a wide range of configuration options. Example code:
%Establish regularly spaced points
num_points = 20;
time_pts = linspace(min(time),max(time),num_points);
depth_pts = linspace(min(depth),max(depth),num_points);
%Run interpolation (with smoothing)
Pest = gridfit(depth, time, temp, time_pts, depth_pts);