Scala implicit conversion from parent trait - scala

The following code does not compile:
import scala.language.implicitConversions
trait Base {
class Wrp[+T](val v: T) // wrapper / internal representation
}
trait BooleanOps extends Base {
// implicit conversion
implicit def lift2BooleanOpsCls(x: Boolean): BooleanOpsCls =
new BooleanOpsCls(new Wrp[Boolean](x))
class BooleanOpsCls(wx: Wrp[Boolean]) {
def ||(wy: =>Wrp[Boolean]): Wrp[Boolean] = new Wrp[Boolean](wx.v || wy.v)
}
}
trait MyExample extends BooleanOps {
// test method
def foo(): Wrp[Boolean] = {
val ret: Wrp[Boolean] = false || new Wrp[Boolean](true)
ret
}
}
Output:
MyExample.scala:18: error: type mismatch;
found : MyExample.this.Wrp[Boolean]
required: Boolean
val ret: Wrp[Boolean] = false || new Wrp[Boolean](true)
^
But if I:
1) put the class Wrp outside of Base
or
2) move the body of BooleanOps to MyExample
everything compiles.
Why does not the original example work? If you have some insight in this behavior, help would be appreciated. Thank you.

One issue is the call-by-name nature of the argument in the def ||(wy: =>Wrp[Boolean])
if you rewite it to def ||(wy: Wrp[Boolean]) it works
but I agree that it is weird that it works if you move around Wrp or BooleanOpsCls! Intended or bug of implicit resolution??

The original example will work if you rename the || method. The compiler finds the false.||() method and doesn't bother to look for an implicit that might also work there.

The problem is that there is no single class called Wrp (ignore the T for a moment) -- Base does not define Wrp but rather defines a named subclass of each and every concrete class that extends Base. The implicits are a red herring, too. The error that's the giveaway is the mention of MyExample.this.Wrp -- remember that there is no such class even as MyExample -- val x = new MyExample would have type Object with MyExample.

Related

TypeTag for case classes

I would like to make a case class Bla that takes a type parameter A and it knows the type of A at runtime (it stores it in its info field).
My attempt is shown in the example below. The problem is that this example does not compile.
case class Bla[A] (){
val info=Run.paramInfo(this) // this does not compile
}
import scala.reflect.runtime.universe._
object Run extends App{
val x=Bla[Int]
def paramInfo[T](x:T)(implicit tag: TypeTag[T]): String = {
val targs = tag.tpe match { case TypeRef(_, _, args) => args }
val tinfo=s"type of $x has type arguments $targs"
println(tinfo)
tinfo
}
paramInfo(x)
}
However when I comment val info=Run.paramInfo(this) then the program runs fine and prints:
type of Bla() has type arguments List(Int)
Is there a way to make this example below compile ? (or in some other way achieve the same goal, i.e. that a case class is self aware of the type of it's type parameter?)
There's little point in using reflection based APIs for this, shapeless has a typeclass that exposes compile time information to runtime using an implicit macro.
import shapeless.Typeable
class Test[T : Typeable] {
def info: String = implicitly[Typeable[T]].describe
}
It's also relatively easy to roll your own thing here, with the added inconvenience of having to compile the implicit macro in a different compilation unit than whatever is using it.
You just need to pass the implicit type tag parameter to the case class constructor (otherwise the type information is lost before calling paraInfo which requires it):
case class Bla[A : TypeTag]() { ... }
Which is shorthand for:
case class Bla[A](implicit tag: TypeTag[A]) { ... }

Understanding implicit conversions

I'm reading Scala documentation of implicit conversions and decided to try it out:
object Main extends App {
val test = TestConversion(100)
test.its
}
class Test[T](val t : T) {
def its = println(t)
}
object Test {
def apply[T](t: T): Test[T] = new Test(t)
}
class TestConversion(v : Int) {
val value = v
}
object TestConversion{
implicit def implicitConversionTest2Int(ict : TestConversion): Test[Int] = Test(ict.value)
def apply(v : Int) = new TestConversion(v)
}
As it's said:
To define your own implicit conversions, you must first import
scala.language.implicitConversions (or invoke the compiler with
-language:implicitConversions). The feature must be explicitly enabled because it has pitfalls if used indiscriminately.
I tried it both in IntelliJ and online IdeOne and I didn't add anything special to make it compile.
What pitfalls it brings and why does it work without any imports?
You don't need to import anything.
The idea is that you can declare implicit conversion function wherever you want in the scope.
For example:
case class Coins(amount:Int)
case class Bills(amount:Int)
object Main {
implicit def billsToCoins(bills:Bills):Coins = Coins(bills.amount * 100)
def printCoins(coins:Coins) = println(s"You have ${coins.amount} coins." )
def main(args:Array[String]): Unit ={
printCoins(Bills(3))
}
}
I have declared here implicit function billsToCoins so it is available in scope of the main function. The only thing needed for the function to act as implicit converter is to have the implicit modifier, compiler will find it and use. You see that the printCoins function takes argument of the Coins type but I was able to pass the value of Bills type and it was successfully created.
Here is the console output:
You have 300 coins.
Process finished with exit code 0

Implicit conversion to make generic type available

I am using a library which has a class that has a generic type that can be quite complicated. I need to write a method that takes a parameter with the generic type that a val of the library class has, and I would like to avoid having to write out the type in the method signature. I thought I might be able to create an implicit class which adds a type to the val that I could use in the method signature, kind of like:
// This comes from a library and can't be changed
case class LibraryClass[A](a: A)
//----------------------------------
object MyCode {
val thing = LibraryClass(3)
implicit class LibraryClassWithType[A](lc: LibraryClass[A]) {
type TheType = A
}
def doStuff(something: thing.TheType): Unit = {
println(something)
}
}
This does not compile (TheType is not a member of LibraryClass). But if I wrap it in the class myself, it works
val thingWithType = LibraryClassWithType(thing)
def doStuff(something: thingWithType.TheType): Unit = {
println(something)
}
Is there something I am missing that will make this work, or is this kind of implicit conversion not valid Scala?
I haven't been able to do this sort of thing with implicits, but I have had to do something similar where I just instantiated these sorts of type holders:
case class LibraryClass[A](a: A)
object MyCode {
val thing = LibraryClass(3)
class HigherTypeHolder[A,F[A]](a: F[A]) {
type AT = A
}
val th = new HigherTypeHolder(thing)
def doStuff(something: th.AT): Unit = {
println(something)
}
}
You can do what (I think) you want like this:
implicit val thing = LibraryClass(3)
def doStuff[A](something: A)(implicit lc: LibraryClass[A])
What I don't understand is why this needs to be so complicated. Why not for example stick with your second approach, without implicits, that works, or why not just do
def doStuff[A](something: A) to begin with?

Creating `**` power operator for Scala?

I quite like the ** syntax for pow, available in many languages (such as Python).
Is it possible to introduce this into Scala, without modifying the Scala 'base' code?
My attempt at an Int only one:
import scala.math.pow
implicit class PowerInt(i: Int) {
def `**`(n: Int, b: Int): Int = pow(n, b).intValue
}
(see it failing on IDEone)
this works for me: (problem#1 pow is defined on doubles, problem#2 extending anyval)
(also there is no point in having those backticks in the methodname?)
import scala.math.pow
object RichIntt {
implicit class PowerInt(val i:Double) extends AnyVal {
def ** (exp:Double):Double = pow(i,exp)
}
def main(args:Array[String])
{
println(5**6)
}
}
This answer is 2 years late, still for the benefit of others I'd like to point out that the accepted answer unnecessarily extends from AnyVal.
There is just a minor bug that needs to be fixed in the original answer. The def ** method needs only one parameter, i.e. the exponent as the base is already passed in the constructor and not two as in the original code. Fixing that and removing the backticks results in:
import scala.math.pow
implicit class PowerInt(i: Int) {
def ** (b: Int): Int = pow(i, b).intValue
}
Which works as expected as seen here.
Scala compiler will cast an Int to a PowerInt only if the method that is called on it is undefined. That's why you don't need to extend from AnyVal.
Behind the scenes, Scala looks for an implicit class whose constructor argument type is the same as the type of the object that is cast. Since the object can have only one type, implicit classes cannot have more than one argument in their constructor. Moreover, if you define two implicit classes with the same constructor type, make sure their functions have unique signatures otherwise Scala wouldn't know which class to cast to and will complain about the ambiguity.
There is a way to make the solution a little bit more generic using Numeric typeclass:
implicit class PowerOp[T: Numeric](value: T) {
import Numeric.Implicits._
import scala.math.pow
def **(power: T): Double = pow(value.toDouble(), power.toDouble())
}
This is my solution using recursion (so I don't need import scala.Math.pow):
object RichInt {
implicit class PowerInt(val base:Double) {
def ** (pow:Double):Double = if (pow==0) 1 else base*(base**(pow-1))
}
def main(args:Array[String]){
println(2.0**3.0) //8.0
println(2.0**0.0) //1.0
}
}

Why does an implicit conversion on the constructor require 'this'?

Consider the following typical Scala 'pimp' code:
class PimpedA(a:A){
def pimp() = "hi"
}
implicit def pimpA(a:A) = new PimpedA(a)
new A(){
pimp() //<--- does not compile
}
However, changing it to:
new A(){
this.pimp()
}
Makes it work.
Shouldn't it be the same to the Scala compiler?
EDIT : Is there any solution that can make it work without having to add the this.?
Not at all. For it to work, pimp needs to be either an object or an imported member of a value, and it is neither. A class has an "implicit" import this._. It has not a mechanism that auto-prepends this to stuff to see if it compiles.
In this case you should give compiler a hint that pimp() is not a random function. When you write
this.pimp()
compiler know there isn't pimp function on class A so it's an error and before giving up it searches implicit conversion in scope and finds it.
pimpA(this).pimp()
And when you just call pimp() compiler doesn't know what object to pass to the pimpA(a: A) implicit function.
UPDATE
It is hard to understand what is your goal. I can only suggest to make PimpedA a typeclass (Pimp[T] in this example).
trait Pimp[T] {
def action(p: T): String
}
implicit object PimpA extends Pimp[A] {
override def action(p: A) = "some actions related to A"
}
def pimp[T: Pimp](p: T) = implicitly[Pimp[T]].action(p)
class A {
val foo = pimp(this)
}
scala> new A foo
res2: String = some actions related to A