Sum numbers that are positive which is less than n - lisp

(defun sum (n)
(if (n<0) 0 n-1) ;; if n<0, add 0. Else add the next smallest.
(sum (n-1)))
So far I come out with something like this but I am not sure how do I declare a variable to store the sum that I would like to return.

Note that you are implementing 1+2+...+m for m = n-1, which admits a simple formula:
(lambda (n)
;; You could inject n-1 on the formula to get n.(n-1)/2
;; (like in Vatine's answer), but here I just decrement
;; the input to show how to modify the local variable
;; and reuse the formula linked above to sum up-to m.
(decf n)
(if (minusp n)
0
(/ (* n (1+ n)) 2)))
An iterative version would work too, there is no need go recursive when doing simple loops:
(lambda (n) (loop :for x :below n :sum x))
Regarding your code:
Space matters1: n<0 is read as a symbol of name "N<0" (upcased by default). The same goes for n-1 which is a symbol named "N-1".
(n<0) will attempt to run the function named n<0. The same goes for (n-1).
Comparison: you can use (minusp n) or (< n 0).
Decrement: you can use (1- n) or (- n 1).
If what you wrote was correctly written, like this:
(defun sum (n)
(if (< n 0) 0 (- n 1))
(sum (- n 1)))
... there would still be issues:
You expect your (n-1) to actually decrement n but here the if only compute a value without doing side-effects.
You unconditionally call (sum (n-1)), which means: infinite recursion. The value returned by the preceding if is always ignored.
1: For details, look at constituent and terminating characters: 2.1.4 Character Syntax Types

Edit: zerop > minusp to check for negative numbers, fixed to fit OPs question
Was some time ago I used Lisp but if I recall right the last evaluation gets returned. A recursive solution to your problem would look like this:
(defun sum (n)
(if (<= n 0) 0 ;;if n is less or equal than 0 return 0
(+ (- n 1) (sum (- n 1))))) ;; else add (n-1) to sum of (n-1)

In Lisp, all comparator functions are just that, functions, so it needs to be (< n 0) and (- n 1) (or, more succinct, (1- n)).
You don't need to keep an intermediate value, you can simply add things up as you go. However, this is complicated by the fact that you are summing to "less than n", not "to n", so you need to use a helper function, if you want to do this recursively.
Even better, if you peruse the standard (easily available on-line, as the Common Lisp HyperSpec, you will sooner or later come across the chapter on iteration, where the loop facility does everything you want.
So if I needed to do this, I would do one of:
(defun my-sum (n)
(/ (* n (1- n)) 2))
or
(defun my-sum (n)
(loop for i below n
sum i))
If I absolutely needed to make it recursive, I would use something like:
(defun my-sum (n)
(labels ((sum-inner (i)
(if (< i 1)
0
(+ i (sum-inner (1- i))))))
(sum-inner (1- n))))
This is (almost) identical to defining a global function called sum-inner, which may be preferable for debugging purposes. However, since it is very unlikely that sum-inner would have any other use, I made it local.

Related

a function called A-SUM that calculates Σpi=ni, where n≥0,p≥0. Below are examples of what A-SUM returns considering different arguments

CL-USER> (a-sum 0 3)
->> 6
I wrote this program :
(defun a-sum (x y)
(if (and (> x -1) (> y -1))
(do ((i 0 (1+ i))
(sum 0)
(num x))
((equal i (+ (- y x) 1)))
(setq sum (+ sum num))
(setq num (+ num 1))
sum)
(print " NOPE")))
put if I run it in the terminal it returns nil and not the answer stated above;
can someone help with the problem so it returns the value then Boolean.
DO,DO* Syntax
The entry for DO,DO* says that the syntax is as follows:
do ({var | (var [init-form [step-form]])}*)
(end-test-form result-form*)
declaration*
{tag | statement}*
The body is used as a list of statements and no intermediate value in this body is used as the result form of the do form. Instead, the do form evaluates as the last expression in result-form*, which defaults to nil.
(do ((i 0 (1+ i))
(sum 0)
(num x))
((equal i (+ (- y x) 1))
;;; RESULT FORMS HERE
)
(setq sum (+ sum num)) ;; (*)
(setq num (+ num 1)) ;; (*)
sum ;; (*)
)
All the expressions marked commented (*) above are used for side-effects only: the result of their evaluation is unused and discarded.
Problem statement
It is not clear to me what Σpi=ni means, and your code does not seem to compute something that could be expressed as that mathematical expression.
One red flag for example is that if (+ (- y x) 1) is negative (i.e. if y < x-1, for example y=1,x=3), then your loop never terminates because i, which is positive or null, will never be equal to the other term which is negative.
I would try to rewrite the problem statement more clearly, and maybe try first a recursive version of your algorithm (whichever is easier to express).
Remarks
Please indent/format your code.
Instead of adding setq statements in the body, try to see if you can define them in the iteration clauses of the loop (since I'm not sure what you are trying to achieve, the following example is only a rewrite of your code):
(do ((i 0 (1+ i))
(sum 0 (+ sum num)
(num x (1+ num))
(... sum))
Consider what value(s) a function returns. It's the value of the last form evaluated. In your case, that appears to be a do or maybe a setq or print (It's difficult to read as it's formatted now, and I don't have question edit privileges).
In short, the form that's returning the value for the function looks to be one evaluated for side-effects instead of returning a value.

Lisp: How to obtain the final loop value?

(defun index-iteration (n)
(let ((x 0))
(loop for j from 0 to n while (< x n) do
(setf x (max-index-for-iteration j)))))
I have the following lisp code, at the end of the loop I want to return the value j. I have investigated:
collect but that returns a list of values with the value I want (the last j at the end)
finally but it didn't work.
return but it ends the loop early
You need to combine finally and return like this:
(loop ...
finally (return (1- j)))
Please note the unfortunate use
of 1- which is due to the
fact that the finally clause is executed after the termination
clause (while in your case) transfers control there.
IOW, it requires the knowledge about how the termination clause is handled.
You can stay within the loop domain (without the extra let) like
this:
(loop for j from 0 to n
for ret = j
do ...
finally (return ret))
You could also use the maximize clause:
(loop for j from 0 to n ...
maximize j)
but this relies on the knowledge that the final value of j was the maximum one.
PS. Note also that you do not need the while clause in your loop.
It seems like you might want something like this, but I am unsure:
(defun index-iteration (n)
(loop :for j :from 0 :to n
:for x := (max-index-for-iteration j)
:while (<= x n)
:finally (return (1- j))))
There are several things that make this smell like off-by-one: the to, the <=, and in your question code the fact that x is always 0 during the first iteration (what should happen for n = 0?). Maybe show a bit more context, e. g. max-index-for-iteration, or what you want to achieve, for a better answer.

if: Bad syntax error (Scheme programming)

(define generalized-triangular
(lambda (input n)
(if (= n 1)
1
(+ (input n) (generalized-triangular (- n 1))))))
This program is designed to take a number and a function as inputs and do the following..
f(1) + f(2) + f(3)+ … + f(N).
An example input would be:
(generalized-triangular square 3)
The Error message:
if: bad syntax;
has 4 parts after keyword in: (if (= n 1) 1 (+ (input n) (generalized-triangular (- n 1))) input)
The error is quite explicit - an if form can only have two parts after the condition - the consequent (if the condition is true) and the alternative (if the condition is false). Perhaps you meant this?
(if (= n 1)
1
(+ (input n) (generalized-triangular input (- n 1))))
I moved the input from the original code, it was in the wrong place, as the call to generalized-triangular expects two arguments, in the right order.
For the record: if you need to execute more than one expression in either the consequent or the alternative (which is not the case for your question, but it's useful to know about it), then you must pack them in a begin, for example:
(if <condition> ; condition
(begin ; consequent
<expression1>
<expression2>)
(begin ; alternative
<expression3>
<expression4>))
Alternatively, you could use a cond, which has an implicit begin:
(cond (<condition> ; condition
<expression1> ; consequent
<expression2>)
(else ; alternative
<expression3>
<expression4>))
Literal answer
The code you posted in your question is fine:
(define generalized-triangular
(lambda (input n)
(if (= n 1)
1
(+ (input n) (generalized-triangular (- n 1))))))
The error message in your question would be for something like this code:
(define generalized-triangular
(lambda (input n)
(if (= n 1)
1
(+ (input n) (generalized-triangular (- n 1)))
input)))
The problem is input. if is of the form (if <cond> <then> <else>). Not counting if itself, it has 3 parts. The code above supplies 4.
Real answer
Two tips:
Use DrRacket to write your code, and let it help you with the indenting. I couldn't make any sense of your original code. (Even after someone edited it for you, the indentation was a bit wonky making it still difficult to parse mentally.)
I don't know about your class, but for "real" Racket code I'd recommend using cond instead of if. Racket has an informal style guide that recommends this, too.
here's the tail-recursive
(define (generalized-triangular f n-max)
(let loop ((n 1) (sum 0))
(if (> n n-max)
0
(loop (+ n 1) (+ sum (f n))))))
Since you're using the racket tag, I assume the implementation of generalized-triangular is not required to use only standard Scheme. In that case, a very concise and efficient version (that doesn't use if at all) can be written with the racket language:
(define (generalized-triangular f n)
(for/sum ([i n]) (f (+ i 1))))
There are two things necessary to understand beyond standard Scheme to understand this definition that you can easily look up in the Racket Reference: how for/sum works and how a non-negative integer behaves when used as a sequence.

Scheme/Racket: do loop order of evaluation

The following procedure is valid in both scheme r6rs and Racket:
;; create a list of all the numbers from 1 to n
(define (make-nums n)
(do [(x n (- x 1)) (lst (list) (cons x lst))]
((= x 0)
lst)))
I've tested it for both r6rs and Racket and it does work properly, but I only know that for sure for DrRacket.
My question is if it is guaranteed that the step expressions ((- x 1) and (cons x lst) in this case) will be evaluated in order. If it's not guaranteed, then my procedure isn't very stable.
I didn't see anything specifying this in the standards for either language, but I'm asking here because when I tested it was evaulated in order.
They're generally not guaranteed to be evaluated in order, but the result will still be the same. This is because there are no side-effects here -- the loop doesn't change x or lst, it just rebinds them to new values, so the order in which the two step expressions are evaluated is irrelevant.
To see this, start with a cleaner-looking version of your code:
(define (make-nums n)
(do ([x n (- x 1)] [lst null (cons x lst)])
[(zero? x) lst]))
translate to a named-let:
(define (make-nums n)
(let loop ([x n] [lst null])
(if (zero? x)
lst
(loop (- x 1) (cons x lst)))))
and further translate that to a helper function (which is what a named-let really is):
(define (make-nums n)
(define (loop x lst)
(if (zero? x)
lst
(loop (- x 1) (cons x lst))))
(loop n null))
It should be clear now that the order of evaluating the two expressions in the recursive loop call doesn't make it do anything different.
Finally, note that in Racket evaluation is guaranteed to be left-to-right. This matters when there are side-effects -- Racket prefers a predictable behavior, whereas others object to it, claiming that this leads people to code that implicitly relies on this. A common small example that shows the difference is:
(list (read-line) (read-line))
which in Racket is guaranteed to return a list of the first line read, and then the second. Other implementations might return the two lines in a different order.

Is it correct to use the backtick / comma idiom inside a (loop ...)?

I have some code which collects points (consed integers) from a loop which looks something like this:
(loop
for x from 1 to 100
for y from 100 downto 1
collect `(,x . ,y))
My question is, is it correct to use `(,x . ,y) in this situation?
Edit: This sample is not about generating a table of 100x100 items, the code here just illustrate the use of two loop variables and the consing of their values. I have edited the loop to make this clear. The actual loop I use depends on several other functions (and is part of one itself) so it made more sense to replace the calls with literal integers and to pull the loop out of the function.
It would be much 'better' to just do (cons x y).
But to answer the question, there is nothing wrong with doing that :) (except making it a tad slower).
I think the answer here is resource utilization (following from This post)
for example in clisp:
[1]> (time
(progn
(loop
for x from 1 to 100000
for y from 1 to 100000 do
collect (cons x y))
()))
WARNING: LOOP: missing forms after DO: permitted by CLtL2, forbidden by ANSI
CL.
Real time: 0.469 sec.
Run time: 0.468 sec.
Space: 1609084 Bytes
GC: 1, GC time: 0.015 sec.
NIL
[2]> (time
(progn
(loop
for x from 1 to 100000
for y from 1 to 100000 do
collect `(,x . ,y)) ;`
()))
WARNING: LOOP: missing forms after DO: permitted by CLtL2, forbidden by ANSI
CL.
Real time: 0.969 sec.
Run time: 0.969 sec.
Space: 10409084 Bytes
GC: 15, GC time: 0.172 sec.
NIL
[3]>
dsm: there are a couple of odd things about your code here. Note that
(loop for x from 1 to 100000
for y from 1 to 100000 do
collect `(,x . ,y))
is equivalent to:
(loop for x from 1 to 100
collecting (cons x x))
which probably isn't quite what you intended. Note three things: First, the way you've written it, x and y have the same role. You probably meant to nest loops. Second, your do after the y is incorrect, as there is not lisp form following it. Thirdly, you're right that you could use the backtick approach here but it makes your code harder to read and not idiomatic for no gain, so best avoided.
Guessing at what you actually intended, you might do something like this (using loop):
(loop for x from 1 to 100 appending
(loop for y from 1 to 100 collecting (cons x y)))
If you don't like the loop macro (like Kyle), you can use another iteration construct like
(let ((list nil))
(dotimes (n 100) ;; 0 based count, you will have to add 1 to get 1 .. 100
(dotimes (m 100)
(push (cons n m) list)))
(nreverse list))
If you find yourself doing this sort of thing a lot, you should probably write a more general function for crossing lists, then pass it these lists of integers
If you really have a problem with iteration, not just loop, you can do this sort of thing recursively (but note, this isn't scheme, your implementation may not guaranteed TCO). The function "genint" shown by Kyle here is a variant of a common (but not standard) function iota. However, appending to the list is a bad idea. An equivalent implementation like this:
(defun iota (n &optional (start 0))
(let ((end (+ n start)))
(labels ((next (n)
(when (< n end)
(cons n (next (1+ n))))))
(next start))))
should be much more efficient, but still is not a tail call. Note I've set this up for the more usual 0-based, but given you an optional parameter to start at 1 or any other integer. Of course the above can be written something like:
(defun iota (n &optional (start 0))
(loop repeat n
for i from start collecting i))
Which has the advantage of not blowing the stack for large arguments. If your implementation supports tail call elimination, you can also avoid the recursion running out of place by doing something like this:
(defun iota (n &optional (start 0))
(labels ((next (i list)
(if (>= i (+ n start))
nil
(next (1+ i) (cons i list)))))
(next start nil)))
Hope that helps!
Why not just
(cons x y)
By the way, I tried to run your code in CLISP and it didn't work as expected. Since I'm not a big fan of the loop macro here's how you might accomplish the same thing recursively:
(defun genint (stop)
(if (= stop 1) '(1)
(append (genint (- stop 1)) (list stop))))
(defun genpairs (x y)
(let ((row (mapcar #'(lambda (y)
(cons x y))
(genint y))))
(if (= x 0) row
(append (genpairs (- x 1) y)
row))))
(genpairs 100 100)