I'm making some code with scala & spark and want to make CSV file from RDD or LIST[Row].
I wanted to process 'ListRDD' data parellel so I thouth output data would be more than one file.
val conf = new SparkConf().setAppName("Csv Application").setMaster("local[2]")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val logFile = "data.csv "
val rawdf = sqlContext.read.format("com.databricks.spark.csv")....
val rowRDD = rawdf.map { row =>
Row(
row.getAs( myMap.ID).toString,
row.getAs( myMap.Dept)
.....
)
}
val df = sqlContext.createDataFrame(rowRDD, mySchema)
val MapRDD = df.map { x => (x.getAs[String](myMap.ID), List(x)) }
val ListRDD = MapRDD.reduceByKey { (a: List[Row], b: List[Row]) => List(a, b).flatten }
myClass.myFunction( ListRDD)
in myClass..
def myFunction(ListRDD: RDD[(String, List[Row])]) = {
var rows: RDD[Row]
ListRDD.foreach( row => {
rows.add? gather? ( make(row._2)) // make( row._2) will return List[Row]
})
rows.saveAsFile(" path") // it's my final goal
}
def make( list: List[Row]) : List[Row] = {
data processing from List[Row]
}
I tried to make RDD data from List by sc.parallelize( list) BUT somehow nothing works. anyidea to make RDD type data from make function.
If you want to make an RDD from a List[Row], here is a way to do so
//Assuming list is your List[Row]
val newRDD: RDD[Object] = sc.makeRDD(list.toArray());
Related
I need your help for my last step of a school project.
val conf: SparkConf = new SparkConf() .setMaster("local[*]") .setAppName("AppName") .set("spark.driver.host", "localhost")
val sc: SparkContext = new SparkContext(conf)
var list_creature = new ListBuffer[creature]()
list_creature += new creature("ska")
list_creature(0).addspell("Heal")
list_creature(0).addspell("Attaque")
list_creature += new creature("moise")
list_creature(1).addspell("Tank")
list_creature(1).addspell("Defense")
list_creature(1).addspell("Attaque")
val rdd = sc.parallelize(list_creature)
val y = rdd.map(e=>(e.name,e.Spells)).collect()
val z = y.flatMap(x =>ListBuffer(x._2->x._1))
val ze = z.flatMap(e =>e._1.flatMap(x => ListBuffer(x->e._2)))
i get this as a result,
(Heal,ska)
(Attaque,ska)
(Tank,moise)
(Defense,moise)
(Attaque,moise)
So, i want to reduce this List[List[String]]
to get List[String,List[string]]
and the result will be :
(Heal,(ska))
(Attaque,(ska,moise))
(Tank,(moise))
(Defense,(moise))
Thanks you're the best ...
Not sure why you create a RDD then collect before all the major transformations. Since you didn't provide definition of class Creature, I'm creating a placeholder class based on your question content as follows:
class Creature(val name: String) extends Serializable {
var spells: List[String] = List.empty[String]
def addspell(spell: String): Unit = {
spells ::= spell
}
}
import scala.collection.mutable.ListBuffer
val list_creature = ListBuffer[Creature]()
list_creature += new Creature("ska")
list_creature(0).addspell("Heal")
list_creature(0).addspell("Attaque")
list_creature += new Creature("moise")
list_creature(1).addspell("Tank")
list_creature(1).addspell("Defense")
list_creature(1).addspell("Attaque")
val rdd = sc.parallelize(list_creature)
val reducedRDD = rdd.flatMap( c => c.spells.map(s => (s, List(c.name))) ).
reduceByKey( _ ++ _ )
reducedRDD.collect
// res1: Array[(String, List[String])] = Array(
// (Heal,List(ska)), (Defense,List(moise)), (Attaque,List(ska, moise)), (Tank,List(moise)
// ))
I am very new to scala (typically I do this in R)
I have imported a large dataframe (2000+ columns, 100000+ rows) that is zero-inflated.
Task
To convert the data to libsvm format
Steps
As I understand the steps are as follows
Ensure feature columns are set to DoubleType and Target is an Int
Iterate through each row, retaining each value >0 in one array and index of its column in another array
Convert to RDD[LabeledPoint]
Save RDD in libsvm format
I am stuck on 3 (but maybe) because I am doing step 2 wrong.
Here is my code:
Main Function:
#Test
def testSpark(): Unit =
{
try
{
var mDF: DataFrame = spark.read.option("header", "true").option("inferSchema", "true").csv("src/test/resources/knimeMergedTRimmedVariables.csv")
val mDFTyped = castAllTypedColumnsTo(mDF, IntegerType, DoubleType)
val indexer = new StringIndexer()
.setInputCol("Majors_Final")
.setOutputCol("Majors_Final_Indexed")
val mDFTypedIndexed = indexer.fit(mDFTyped).transform(mDFTyped)
val mDFFinal = castColumnTo(mDFTypedIndexed,"Majors_Final_Indexed", IntegerType)
//only doubles accepted by sparse vector, so that's what we filter for
val fieldSeq: scala.collection.Seq[StructField] = schema.fields.toSeq.filter(f => f.dataType == DoubleType)
val fieldNameSeq: Seq[String] = fieldSeq.map(f => f.name)
val labeled:DataFrame = mDFFinal.map(row => convertRowToLabeledPoint(row,fieldNameSeq,row.getAs("Majors_Final_Indexed"))).toDF()
assertTrue(true)
}
catch
{
case ex: Exception =>
{
println(s"There has been an Exception. Message is ${ex.getMessage} and ${ex}")
fail()
}
}
}
Convert each row to LabeledPoint:
#throws(classOf[Exception])
private def convertRowToLabeledPoint(rowIn: Row, fieldNameSeq: Seq[String], label:Int): LabeledPoint =
{
try
{
val values: Map[String, Double] = rowIn.getValuesMap(fieldNameSeq)
val sortedValuesMap = ListMap(values.toSeq.sortBy(_._1): _*)
val rowValuesItr: Iterable[Double] = sortedValuesMap.values
var positionsArray: ArrayBuffer[Int] = ArrayBuffer[Int]()
var valuesArray: ArrayBuffer[Double] = ArrayBuffer[Double]()
var currentPosition: Int = 0
rowValuesItr.foreach
{
kv =>
if (kv > 0)
{
valuesArray += kv;
positionsArray += currentPosition;
}
currentPosition = currentPosition + 1;
}
val lp:LabeledPoint = new LabeledPoint(label, org.apache.spark.mllib.linalg.Vectors.sparse(positionsArray.size,positionsArray.toArray, valuesArray.toArray))
return lp
}
catch
{
case ex: Exception =>
{
throw new Exception(ex)
}
}
}
Problem
So then I try to create a dataframe of labeledpoints which can easily be converted to an RDD.
val labeled:DataFrame = mDFFinal.map(row => convertRowToLabeledPoint(row,fieldNameSeq,row.getAs("Majors_Final_Indexed"))).toDF()
But I get the following error:
SparkTest.scala:285: error: Unable to find encoder for type stored in a Dataset. Primitive types (Int, String, etc) and Product types (case classes) are supported by importing spark.implicits._ Support for seri
alizing other types will be added in future releases.
[INFO] val labeled:DataFrame = mDFFinal.map(row => convertRowToLabeledPoint(row,fieldNameSeq,row.getAs("Majors_Final_Indexed"))).toDF()
OK, so I skipped the DataFrame and created an Array of LabeledPoints whish is easily converted to an RDD. The rest is easy.
I stress, that while this works, I am new to scala and there may be more efficient ways to do this.
Main Function is now as follows:
val mDF: DataFrame = spark.read.option("header", "true").option("inferSchema", "true").csv("src/test/resources/knimeMergedTRimmedVariables.csv")
val mDFTyped = castAllTypedColumnsTo(mDF, IntegerType, DoubleType)
val indexer = new StringIndexer()
.setInputCol("Majors_Final")
.setOutputCol("Majors_Final_Indexed")
val mDFTypedIndexed = indexer.fit(mDFTyped).transform(mDFTyped)
val mDFFinal = castColumnTo(mDFTypedIndexed,"Majors_Final_Indexed", IntegerType)
mDFFinal.show()
//only doubles accepted by sparse vector, so that's what we filter for
val fieldSeq: scala.collection.Seq[StructField] = mDFFinal.schema.fields.toSeq.filter(f => f.dataType == DoubleType)
val fieldNameSeq: Seq[String] = fieldSeq.map(f => f.name)
var positionsArray: ArrayBuffer[LabeledPoint] = ArrayBuffer[LabeledPoint]()
mDFFinal.collect().foreach
{
row => positionsArray+=convertRowToLabeledPoint(row,fieldNameSeq,row.getAs("Majors_Final_Indexed"));
}
val mRdd:RDD[LabeledPoint]= spark.sparkContext.parallelize(positionsArray.toSeq)
MLUtils.saveAsLibSVMFile(mRdd, "./output/libsvm")
I have input lines like below
t1, file1, 1, 1, 1
t1, file1, 1, 2, 3
t1, file2, 2, 2, 2, 2
t2, file1, 5, 5, 5
t2, file2, 1, 1, 2, 2
and the output like below rows which is a vertical addition of the corresponding numbers.
file1 : [ 1+, 1+2+5, 1+3+5 ]
file2 : [ 2+1, 2+1, 2+2, 2+2 ]
Currently data aggregation logic is working for batch interval, but it's not maintaining state. So, i am adding update_state_by_key function and passing below function, Is this right way to do?
My current program:
def updateValues( newValues: Seq[Array[Int]], currentValue: Option[Array[Int]]) = {
val previousCount = currentValue.getOrElse(Array.fill[Byte](newValues.length)(0))
val allValues = newValues +: previousCount
Some(allValues.toList.transpose.map(_.sum).toArray)
}
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("HBaseStream")
val sc = new SparkContext(conf)
// create a StreamingContext, the main entry point for all streaming functionality
val ssc = new StreamingContext(sc, Seconds(2))
// parse the lines of data into coverage objects
val inputStream = ssc.socketTextStream(<hostname>, 9999)
ssc.checkpoint("<hostname>:8020/user/spark/checkpoints_dir")
inputStream.print(10)
val parsedDstream = inputStream
.map(line => {
val splitLines = line.split(",")
(splitLines(1), splitLines.slice(2, splitLines.length).map(_.trim.toInt))
})
val aggregated_file_counts = parsedDstream.updateStateByKey(updateValues)
// Start the computation
ssc.start()
// Wait for the computation to terminate
ssc.awaitTermination()
}
For reference, my previous program (without stateful transformation):
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("HBaseStream")
val sc = new SparkContext(conf)
// create a StreamingContext, the main entry point for all streaming functionality
val ssc = new StreamingContext(sc, Seconds(2))
val inputStream = ssc.socketTextStream("hostname", 9999)
val parsedDstream = inputStream
.map(line => {
val splitLines = line.split(",")
(splitLines(1), splitLines.slice(2, splitLines.length).map(_.trim.toInt))
})
.reduceByKey((first, second) => {
val listOfArrays = ArrayBuffer(first, second)
listOfArrays.toList.transpose.map(_.sum).toArray
})
.foreachRDD(rdd => rdd.foreach(Blaher.blah))
}
Thanks in advance.
What you're looking for is updateStateByKey. For DStream[(T, U)] it should take a function with two arguments:
Seq[U] - representing state for current window
Option[U] - representing accumulated state
and return Option[U].
Given your code it could be implemented for example like this:
import breeze.linalg.{DenseVector => BDV}
import scala.util.Try
val state: DStream[(String, Array[Int])] = parsedStream.updateStateByKey(
(current: Seq[Array[Int]], prev: Option[Array[Int]]) => {
prev.map(_ +: current).orElse(Some(current))
.flatMap(as => Try(as.map(BDV(_)).reduce(_ + _).toArray).toOption)
})
To be able to use it you'll have to configure checkpointing.
Spark streaming textFileStream and fileStream can monitor a directory and process the new files in a Dstream RDD.
How to get the file names that are being processed by the DStream RDD at that particular interval?
fileStream produces UnionRDD of NewHadoopRDDs. The good part about NewHadoopRDDs created by sc.newAPIHadoopFile is that their names are set to their paths.
Here's the example of what you can do with that knowledge:
def namedTextFileStream(ssc: StreamingContext, directory: String): DStream[String] =
ssc.fileStream[LongWritable, Text, TextInputFormat](directory)
.transform( rdd =>
new UnionRDD(rdd.context,
rdd.dependencies.map( dep =>
dep.rdd.asInstanceOf[RDD[(LongWritable, Text)]].map(_._2.toString).setName(dep.rdd.name)
)
)
)
def transformByFile[U: ClassTag](unionrdd: RDD[String],
transformFunc: String => RDD[String] => RDD[U]): RDD[U] = {
new UnionRDD(unionrdd.context,
unionrdd.dependencies.map{ dep =>
if (dep.rdd.isEmpty) None
else {
val filename = dep.rdd.name
Some(
transformFunc(filename)(dep.rdd.asInstanceOf[RDD[String]])
.setName(filename)
)
}
}.flatten
)
}
def main(args: Array[String]) = {
val conf = new SparkConf()
.setAppName("Process by file")
.setMaster("local[2]")
val ssc = new StreamingContext(conf, Seconds(30))
val dstream = namesTextFileStream(ssc, "/some/directory")
def byFileTransformer(filename: String)(rdd: RDD[String]): RDD[(String, String)] =
rdd.map(line => (filename, line))
val transformed = dstream.
transform(rdd => transformByFile(rdd, byFileTransformer))
// Do some stuff with transformed
ssc.start()
ssc.awaitTermination()
}
For those that want some Java code instead of Scala:
JavaPairInputDStream<LongWritable, Text> textFileStream =
jsc.fileStream(
inputPath,
LongWritable.class,
Text.class,
TextInputFormat.class,
FileInputDStream::defaultFilter,
false
);
JavaDStream<Tuple2<String, String>> namedTextFileStream = textFileStream.transform((pairRdd, time) -> {
UnionRDD<Tuple2<LongWritable, Text>> rdd = (UnionRDD<Tuple2<LongWritable, Text>>) pairRdd.rdd();
List<RDD<Tuple2<LongWritable, Text>>> deps = JavaConverters.seqAsJavaListConverter(rdd.rdds()).asJava();
List<RDD<Tuple2<String, String>>> collectedRdds = deps.stream().map( depRdd -> {
if (depRdd.isEmpty()) {
return null;
}
JavaRDD<Tuple2<LongWritable, Text>> depJavaRdd = depRdd.toJavaRDD();
String filename = depRdd.name();
JavaPairRDD<String, String> newDep = JavaPairRDD.fromJavaRDD(depJavaRdd).mapToPair(t -> new Tuple2<String, String>(filename, t._2().toString())).setName(filename);
return newDep.rdd();
}).filter(t -> t != null).collect(Collectors.toList());
Seq<RDD<Tuple2<String, String>>> rddSeq = JavaConverters.asScalaBufferConverter(collectedRdds).asScala().toIndexedSeq();
ClassTag<Tuple2<String, String>> classTag = scala.reflect.ClassTag$.MODULE$.apply(Tuple2.class);
return new UnionRDD<Tuple2<String, String>>(rdd.sparkContext(), rddSeq, classTag).toJavaRDD();
});
Alternatively, by modifying FileInputDStream so that rather than loading the contents of the files into the RDD, it simply creates an RDD from the filenames.
This gives a performance boost if you don't actually want to read the data itself into the RDD, or want to pass filenames to an external command as one of your steps.
Simply change filesToRDD(..) so that it makes an RDD of the filenames, rather than loading the data into the RDD.
See: https://github.com/HASTE-project/bin-packing-paper/blob/master/spark/spark-scala-cellprofiler/src/main/scala/FileInputDStream2.scala#L278
// 4 workers
val sc = new SparkContext("local[4]", "naivebayes")
// Load documents (one per line).
val documents: RDD[Seq[String]] = sc.textFile("/tmp/test.txt").map(_.split(" ").toSeq)
documents.zipWithIndex.foreach{
case (e, i) =>
val collectedResult = Tokenizer.tokenize(e.mkString)
}
val hashingTF = new HashingTF()
//pass collectedResult instead of document
val tf: RDD[Vector] = hashingTF.transform(documents)
tf.cache()
val idf = new IDF().fit(tf)
val tfidf: RDD[Vector] = idf.transform(tf)
in the above code snippet, i would want to extract collectedResult to reuse it for hashingTF.transform, How can this be achieved where the signature of tokenize function is
def tokenize(content: String): Seq[String] = {
...
}
Looks like you want map rather than foreach. I don't understand what you're using zipWithIndex for, nor why you're calling split on your lines only to join them straight back up again with mkString.
val lines: Rdd[String] = sc.textFile("/tmp/test.txt")
val tokenizedLines = lines.map(tokenize)
val hashes = tokenizedLines.map(hashingTF)
hashes.cache()
...