Matlab plotting data with specified condition with contourf - matlab

I have data in a matrix generated in a nested for loop. I want to only plot the data that meets a certain condition (e.g. it must be bigger than 0.6). Whether or not the data point meets that condition is stored as 1 or 0 in my mlist matrix.
What is the easiest way to plot this in Matlab? For the data points that don't meet the condition, it can just be white space.
xlist = linspace(-1,1,20);
ylist = linspace(-2,2,30);
zlist = zeros(length(xlist),length(ylist));
mlist = zeros(length(xlist),length(ylist));
% iteration counter
ii = 0;
jj = 0;
for x = xlist
ii = ii + 1;
for y = ylist
z = sin(x*y);
jj = jj + 1;
zlist(jj) = z;
if z > 0.6
mlist(jj) = 1;
else
mlist(jj) = 0;
end
end
end
contourf(ylist,xlist,zlist)
mesh(ylist,xlist,zlist)

On way of "removing" data in plots in MATLAB without needing to actually remove it from your data (as you'll have problems with non-uniform grids and so on) is replacing it by NaN, as most of the MATLAB plots will treat a NaN as missing data and will not draw anything on that point.
You can change your program to not use loops as:
[x,y]=meshgrid(linspace(-1,1,20),linspace(-2,2,30));
z = sin(x.*y);
zlist(z<0.6)=NaN;
contourf(y,x,zlist); % // maybe x,y?

The easiest way, I believe, would be to limit the z-axis:
xlist = linspace(-1,1,20);
ylist = linspace(-2,2,30);
zlist = zeros(length(xlist),length(ylist));
mlist = zeros(length(xlist),length(ylist));
% iteration counter
ii = 0;
jj = 0;
for x = xlist
ii = ii + 1;
for y = ylist
z = sin(x*y);
jj = jj + 1;
zlist(jj) = z;
end
end
contourf(ylist,xlist,zlist)
mesh(ylist,xlist,zlist)
zlim([0.6,max(z)])
And for added visibility, I would consider changing the contourf and mesh calls to:
surf(ylist,xlist,zlist)

Related

Matlab Error: Index in Position 1 exceeds array bounds

I am attempting to create a gamma distribution in MATLAB; however, I keep receiving the error:
Index in Position 1 exceeds array bounds (must not exceed 100).
Assuming I am reading this correctly, it is referring to variable M that is simply = 2500 (the number of pseudo-random variables I am using for this project).
I was hoping someone can explain what is wrong with my logic and possibly a solution.
alpha = 0.5;
w = gamma_rdn(M,alpha);
x1 = (0.0001:0.001:1); % For plot
figure(5)
subplot(2,1,1);hist(w);title('Histogram of Gamma RDN');
subplot(2,1,2);plot(x1,pdf('gam',x1,alpha,1));title('Theoretical Gamma Density with \alpha = 0.5');
axis([0 1 0 100]);
% The gamma_rdn function is implemented as follows:
function[w] = gamma_rdn(M,alpha)
% Generate random numbers from the gamma distribution with parameter
% alpha <= 1, beta = 1
pe = exp(1);
w = zeros(M,1);
u = rand(100,1);
b = (alpha + pe)/pe;
i = 0;
j = 0;
while j < M
i = i+1;
y = b*u(i,1);
if y <= 1
z = y^(1/alpha);
i = i+1;
if u(i,1) <= exp(-z)
j = j+1;
w(j,1) = z;
else
i = i+1;
end
else
z = -log((b-y)/alpha);
i = i+1;
if u(i,1) <= z^(alpha - 1)
j = j+1;
w(j,1) = z;
else
i = i+1;
end
end
end
if i > 95
u = rand(100,1);
i = 0;
end
end
Is there a particular reason you chose u = rand(100,1)?
The problem is coming because in while loop, as soon as variable i exceeds 100 (say i=101), y = b*u(i,1) becomes invalid. That is, you are trying to access u(101,1) while the size of u is (100,1).
If there's not particular reason, try a large enough size, like, u = rand(10000,1).

single perceptron not converging

I am programming a simple perceptron in matlab but it is not converging and I can't figure out why.
The goal is to binary classify 2D points.
%P1 Generate a dataset of two-dimensional points, and choose a random line in
%the plane as your target function f, where one side of the line maps to +1 and
%the other side to -1. Let the inputs xn 2 R2 be random points in the plane,
%and evaluate the target function f on each xn to get the corresponding output
%yn = f(xn).
clear all;
clc
clear
n = 20;
inputSize = 2; %number of inputs
dataset = generateRandom2DPointsDataset(n)';
[f , m , b] = targetFunction();
signs = classify(dataset,m,b);
weights=ones(1,2)*0.1;
threshold = 0;
fprintf('weights before:%d,%d\n',weights);
mistakes = 1;
numIterations = 0;
figure;
plotpv(dataset',(signs+1)/2);%mapping signs from -1:1 to 0:1 in order to use plotpv
hold on;
line(f(1,:),f(2,:));
pause(1)
while true
mistakes = 0;
for i = 1:n
if dataset(i,:)*weights' > threshold
result = 1;
else
result = -1;
end
error = signs(i) - result;
if error ~= 0
mistakes = mistakes + 1;
for j = 1:inputSize
weights(j) = weights(j) + error*dataset(i,j);
end
end
numIterations = numIterations + 1
end
if mistakes == 0
break
end
end
fprintf('weights after:%d,%d\n',weights);
random points and signs are fine since plotpv is working well
The code is based on that http://es.mathworks.com/matlabcentral/fileexchange/32949-a-perceptron-learns-to-perform-a-binary-nand-function?focused=5200056&tab=function.
When I pause the infinite loop, this is the status of my vairables:
I am not able to see why it is not converging.
Additional code( it is fine, just to avoid answers asking for that )
function [f,m,b] = targetFunction()
f = rand(2,2);
f(1,1) = 0;
f(1,2) = 1;
m = (f(2,2) - f(2,1));
b = f(2,1);
end
function dataset = generateRandom2DPointsDataset(n)
dataset = rand(2,n);
end
function values = classify(dataset,m,b)
for i=1:size(dataset,1)
y = m*dataset(i,1) + b;
if dataset(i,2) >= y, values(i) = 1;
else values(i) = -1;
end
end
end

Local Interest Point Detection using Difference of Gaussian in Matlab

I'm writing the code in Matlab to find interest point using DoG in the image.
Here is the main.m:
imTest1 = rgb2gray(imread('1.jpg'));
imTest1 = double(imTest1);
sigma = 0.6;
k = 5;
thresh = 3;
[x1,y1,r1] = DoG(k,sigma,thresh,imTest1);
%get the interest points and show it on the image with its scale
figure(1);
imshow(imTest1,[]), hold on, scatter(y1,x1,r1,'r');
And the function DoG is:
function [x,y,r] = DoG(k,sigma,thresh,imTest)
x = []; y = []; r = [];
%suppose 5 levels of gaussian blur
for i = 1:k
g{i} = fspecial('gaussian',size(imTest),i*sigma);
end
%so 4 levels of DoG
for i = 1:k-1
d{i} = imfilter(imTest,g{i+1}-g{i});
end
%compare the current pixel in the image to the surrounding pixels (26 points),if it is the maxima/minima, this pixel will be a interest point
for i = 2:k-2
for m = 2:size(imTest,1)-1
for n = 2:size(imTest,2)-1
id = 1;
compare = zeros(1,27);
for ii = i-1:i+1
for mm = m-1:m+1
for nn = n-1:n+1
compare(id) = d{ii}(mm,nn);
id = id+1;
end
end
end
compare_max = max(compare);
compare_min = min(compare);
if (compare_max == d{i}(m,n) || compare_min == d{i}(m,n))
if (compare_min < -thresh || compare_max > thresh)
x = [x;m];
y = [y;n];
r = [r;abs(d{i}(m,n))];
end
end
end
end
end
end
So there's a gaussian function and the sigma i set is 0.6. After running the code, I find the position is not correct and the scales looks almost the same for all interest points. I think my code should work but actually the result is not. Anybody know what's the problem?

How to vectorize a matlab script converting a 3d matrix to a single vector?

I am writing a graphical representation of numerical stability of differential operators and I am having trouble removing a nested for loop. The code loops through all entries in the X,Y, plane and calculates the stability value for each point. This is done by finding the roots of a polynomial of a size dependent on an input variable (length of input vector results in a polynomial 3d matrix of size(m,n,(lenght of input vector)). The main nested for loop is as follows.
for m = 1:length(z2)
for n = 1:length(z1)
pointpoly(1,:) = p(m,n,:);
r = roots(pointpoly);
if isempty(r),r=1e10;end
z(m,n) = max(abs(r));
end
end
The full code of an example numerical method (Trapezoidal Rule) is as follows. Any and all help is appreciated.
alpha = [-1 1];
beta = [.5 .5];
Wind = 2;
Wsize = 500;
if numel(Wind) == 1
Wind(4) = Wind(1);
Wind(3) = -Wind(1);
Wind(2) = Wind(4);
Wind(1) = Wind(3);
end
if numel(Wsize) == 1
Wsize(2) = Wsize;
end
z1 = linspace(Wind(1),Wind(2),Wsize(1));
z2 = linspace(Wind(3),Wind(4),Wsize(2));
[Z1,Z2] = meshgrid(z1,z2);
z = Z1+1i*Z2;
p = zeros(Wsize(2),Wsize(1),length(alpha));
for n = length(alpha):-1:1
p(:,:,(length(alpha)-n+1)) = alpha(n)-z*beta(n);
end
for m = 1:length(z2)
for n = 1:length(z1)
pointpoly(1,:) = p(m,n,:);
r = roots(pointpoly);
if isempty(r),r=1e10;end
z(m,n) = max(abs(r));
end
end
figure()
surf(Z1,Z2,z,'EdgeColor','None');
caxis([0 2])
cmap = jet(255);
cmap((127:129),:) = 0;
colormap(cmap)
view(2);
title(['Alpha Values (',num2str(alpha),') Beta Values (',num2str(beta),')'])
EDIT::
I was able to remove one of the for loops using the reshape command. So;
for m = 1:length(z2)
for n = 1:length(z1)
pointpoly(1,:) = p(m,n,:);
r = roots(pointpoly);
if isempty(r),r=1e10;end
z(m,n) = max(abs(r));
end
end
has now become
gg = reshape(p,[numel(p)/length(alpha) length(alpha)]);
r = zeros(numel(p)/length(alpha),1);
for n = 1:numel(p)/length(alpha)
temp = roots(gg(n,:));
if isempty(temp),temp = 0;end
r(n,1) = max(abs(temp));
end
z = reshape(r,[Wsize(2),Wsize(1)]);
This might be one for loop, but I am still going through the same number of elements. Is there a way to use the roots command on all of my rows at the same time?

Matlab debugging - beginner level

I am a total beginner in Matlab and trying to write some Machine Learning Algorithms in Matlab. I would really appreciate it if someone can help me in debugging this code.
function y = KNNpredict(trX,trY,K,X)
% trX is NxD, trY is Nx1, K is 1x1 and X is 1xD
% we return a single value 'y' which is the predicted class
% TODO: write this function
% int[] distance = new int[N];
distances = zeroes(N, 1);
examples = zeroes(K, D+2);
i = 0;
% for(every row in trX) { // taking ONE example
for row=1:N,
examples(row,:) = trX(row,:);
%sum = 0.0;
%for(every col in this example) { // taking every feature of this example
for col=1:D,
% diff = compute squared difference between these points - (trX[row][col]-X[col])^2
diff =(trX(row,col)-X(col))^2;
sum += diff;
end % for
distances(row) = sqrt(sum);
examples(i:D+1) = distances(row);
examples(i:D+2) = trY(row:1);
end % for
% sort the examples based on their distances thus calculated
sortrows(examples, D+1);
% for(int i = 0; i < K; K++) {
% These are the nearest neighbors
pos = 0;
neg = 0;
res = 0;
for row=1:K,
if(examples(row,D+2 == -1))
neg = neg + 1;
else
pos = pos + 1;
%disp(distances(row));
end
end % for
if(pos > neg)
y = 1;
return;
else
y = -1;
return;
end
end
end
Thanks so much
When working with matrices in MATLAB, it is usually better to avoid excessive loops and instead use vectorized operations whenever possible. This will usually produce faster and shorter code.
In your case, the k-nearest neighbors algorithm is simple enough and can be well vectorized. Consider the following implementation:
function y = KNNpredict(trX, trY, K, x)
%# euclidean distance between instance x and every training instance
dist = sqrt( sum( bsxfun(#minus, trX, x).^2 , 2) );
%# sorting indices from smaller to larger distances
[~,ord] = sort(dist, 'ascend');
%# get the labels of the K nearest neighbors
kTrY = trY( ord(1:min(K,end)) );
%# majority class vote
y = mode(kTrY);
end
Here is an example to test it using the Fisher-Iris dataset:
%# load dataset (data + labels)
load fisheriris
X = meas;
Y = grp2idx(species);
%# partition the data into training/testing
c = cvpartition(Y, 'holdout',1/3);
trX = X(c.training,:);
trY = Y(c.training);
tsX = X(c.test,:);
tsY = Y(c.test);
%# prediction
K = 10;
pred = zeros(c.TestSize,1);
for i=1:c.TestSize
pred(i) = KNNpredict(trX, trY, K, tsX(i,:));
end
%# validation
C = confusionmat(tsY, pred)
The confusion matrix of the kNN prediction with K=10:
C =
17 0 0
0 16 0
0 1 16