Derivative of Discrete Fourier Transform in Matlab - matlab

this is a part of an assignment for a Fourier-Analysis course.
In this assignment I was asked to implement a matlab function to compute the derivative of a discrete function using the derivative of the Discrete Fourier Transform. The formula I was given was this formula:
The code I wrote is this, using 513 datapoints from -pi to pi:
t = -pi + ((2*pi)/513)*(0:513-1);
for n = 1:513
tmpsum = 0;
for k = 1:N
tmpsum = tmpsum + (1i*k*fft(g(k))*exp(1i*k*n));
end
deriv(n) = real((1/sqrt(N))*tmpsum);
end
It executes fine, but once I plot it against t (e.g. for g = sin(t)) I get a really weird graph, with spikes up to 2000 on the y axis.
What am I doing wrong?
EDIT:
This is the code I currently run:
N = 512;
t = -pi + ((2*pi)/(N))*(0:N-1);
f = sin(t);
deriv = zeros(1,length(t));
ffft = fft(f);
for n = 1:N
tmpsum = 0;
for k = 1:N
tmpsum = tmpsum + ((1i*k*ffft(k))*exp(1i*k*n));
end
deriv(n) = (1/sqrt(N))*tmpsum;
end
plot(t,f,t,deriv);

Related

Finding Percent Error of a Fourier Series

Find the error as a function of n, where the error is defined as the difference between two the voltage from the Fourier series (vF (t)) and the value from the ideal function (v(t)), normalized to the maximum magnitude (Vm ):
I am given this prompt where Vm = 1 V. Below this line is the code which I have written.
I am trying to write a function to solve this question: Plot the error versus time for n=3,n=5,n=10, and n=50. (10points). What does it look like I am doing incorrectly?
clc;
close all;
clear all;
% define the signal parameters
Vm = 1;
T = 1;
w0 = 2*pi/T;
% define the symbolic variables
syms n t;
% define the signal
v1 = Vm*sin(4*pi*t/T);
v2 = 2*Vm*sin(4*pi*t/T);
% evaluate the fourier series integral
an1 = 2/T*int(v1*cos(n*w0*t),0,T/2) + 2/T*int(v2*cos(n*w0*t),T/2,T);
bn1 = 2/T*int(v1*sin(n*w0*t),0,T/2) + 2/T*int(v2*sin(n*w0*t),T/2,T);
a0 = 1/T*int(v1,0,T/2) + 1/T*int(v2,T/2,T);
% obtain C by substituting n in c[n]
nmax = 100;
n = 1:nmax;
a = subs(an1);
b = subs(bn1);
% define the time vector
ts = 1e-2; % ts is sampling the
t = 0:ts:3*T-ts;
% directly plot the signal x(t)
t1 = 0:ts:T-ts;
v1 = Vm*sin(4*pi*t1/T).*(t1<=T/2);
v2 = 2*Vm*sin(4*pi*t1/T).*(t1>T/2).*(t1<T);
v = v1+v2;
x = repmat(v,1,3);
% Now fourier series reconstruction
N = [3];
for p = 1:length(N)
for i = 1:length(t)
for k = N(p)
x(k,i) = a(k)*cos(k*w0*t(i)) + b(k)*sin(k*w0*t(i));
end
% y(k,i) = a0+sum(x(:,i)); % Add DC term
end
end
z = a0 + sum(x);
figure(1);
plot(t,z);
%Percent error
function [per_error] = percent_error(measured, actual)
per_error = abs(( (measured - actual) ./ 1) * 100);
end
The purpose of the forum is helping with specific technical questions, not doing your homework.

Solving Coupled partial differential equations of stiff nature using MATLAB

I want to solve coupled partial differential equations of first order, which are of stiff nature. I have coded in MATLAB to solve this pde's, I have used Method of line to convert PDE into ODE, and i have used beam and warmings(second order upwind) method to discritize the spatial derivative. The discretization method is total variation diminishing(TVD) to eliminate the oscillation. But rather using TVD and ode15s solver to integrate resultant stiff ode's the resultant plot is oscillatory(not smooth). What should i do to eliminate this oscillation and get correct results.
I have attached my MATLAB code.. please see it and suggest some improvement.
∂y(1)/∂t=-0.1 ∂y(1)/∂x + (0.5*e^(15*(y(2)⁄(1+y(2))))*(1- y(1))
∂y(2)/∂t=-0.1 ∂y(2)/∂x - (0.4*e^(15*(y(2)⁄(1+y(2))))*(1- y(1))-0.4
Initial condition: at t = 0 y(1)= y(2)=0
Boundary condition: y(1)= y(2) = 0 at x=0
I have attached my MATLAB code.. please see it and suggest some improvement.
function brussode(N)
if nargin<1
N = 149;
end
tspan = [0 10];
m = 0.00035
t = (1:N)/(N+1)*m;
y0 = [repmat(0,1,N); repmat(0,1,N)];
p = 0.5
q = 0.4
options = odeset('Vectorized','on','JPattern',jpattern(N));
[t,y] = ode15s(#f,tspan,y0,options);
a = size(y,2)
u = y(:,1:2:end);
x = (1:N)/(N+1);
figure;
%surf(x,t(end,:),u);
plot(x,u(end,:))
xlabel('space');
ylabel('solution');
zlabel('solution u');
%--------------------------------------------------------------
%Nested function -- N is provided by the outer function.
%
function dydt = f(t,y)
%Derivative function
dydt = zeros(2*N,size(y,2)); %preallocate dy/dt
x = (1:N)/(N+1);
% Evaluate the 2 components of the function at one edge of the grid
% (with edge conditions).
i = 1;
%y(1,:) = 0;
%y(2,:) = 0;
dydt(i,:) = -0.1*(N+1)*(y(i+2,:)-0)+ (0.01/2)*m*((N+1).^3)*(y(i+2,:)-0) + p*exp(15*(0/(1+0)))*(1-0);
dydt(i+1,:) = -0.1*(N+1)*(y(i+3,:)-0)+ (0.01/2)*m*((N+1).^3)*(y(i+3,:)-0) - q*exp(15*(0/(1+0)))*(1-0)+0.25;
i = 3;
%y(1,:) = 0;
%y(2,:) = 0;
dydt(i,:) = -0.1*(N+1)*(y(i+2,:)-y(i,:)) + (0.01/2)*m*((N+1).^3)*(y(i+3,:)-y(i,:)) + p*exp(15*(y(i+1,:)/(1+y(i+1,:))))*(1-y(i,:));
dydt(i+1,:) = -0.1*(N+1)*(y(i+3,:)-y(i+1,:)) + (0.01/2)*m*((N+1).^3)*(y(i+3,:)-y(i,:)) - q*exp(15*(y(i+1,:)/(1+y(i+1,:))))*(1-y(i,:))+0.25;
%Evaluate the 2 components of the function at all interior grid
%points.
i = 5:2:2*N;
%y(1,:) = 0;
% y(2,:) = 0;
dydt(i,:) = (-0.1/2)*(N+1)*(3*y(i,:)-4*y(i-2,:)+y(i-4,:)) +(0.01/2)*m*((N+1).^3)*(y(i,:)-2*y(i-2,:)+y(i-4,:))+ p*exp(15*(y(i+1,:)/(1+y(i+1,:))))*(1-y(i,:));
dydt(i+1,:) = (-0.1/2)*(N+1)*(3*y(i+1,:)-4*y(i-1,:)+y(i-3,:))+(0.01/2)*m*((N+1).^3)*(y(i+1,:)-2*y(i-1,:)+y(i-3,:)) - q*exp(15*(y(i+1,:)/(1+y(i+1,:))))*(1-y(i,:))+0.25;
end
%-------------------------------------------------------------
end %brussode
%-------------------------------------------------------------
% Subfunction -- the sparsity pattern
%
function S = jpattern(N)
% Jacobian sparsity patter
B = ones(2*N,5);
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1);
S = spdiags(B,-2:2,2*N,2*N);
end
%-------------------------------------------------------------

Solving System of Second Order Ordinary Differential Equation in Matlab

Introduction
I am using Matlab to simulate some dynamic systems through numerically solving systems of Second Order Ordinary Differential Equations using ODE45. I found a great tutorial from Mathworks (link for tutorial at end) on how to do this.
In the tutorial the system of equations is explicit in x and y as shown below:
x''=-D(y) * x' * sqrt(x'^2 + y'^2)
y''=-D(y) * y' * sqrt(x'^2 + y'^2) + g(y)
Both equations above have form y'' = f(x, x', y, y')
Question
However, I am coming across systems of equations where the variables can not be solved for explicitly as shown in the example. For example one of the systems has the following set of 3 second order ordinary differential equations:
y double prime equation
y'' - .5*L*(x''*sin(x) + x'^2*cos(x) + (k/m)*y - g = 0
x double prime equation
.33*L^2*x'' - .5*L*y''sin(x) - .33*L^2*C*cos(x) + .5*g*L*sin(x) = 0
A single prime is first derivative
A double prime is second derivative
L, g, m, k, and C are given parameters.
How can Matlab be used to numerically solve a set of second order ordinary differential equations where second order can not be explicitly solved for?
Thanks!
Your second system has the form
a11*x'' + a12*y'' = f1(x,y,x',y')
a21*x'' + a22*y'' = f2(x,y,x',y')
which you can solve as a linear system
[x'', y''] = A\f
or in this case explicitly using Cramer's rule
x'' = ( a22*f1 - a12*f2 ) / (a11*a22 - a12*a21)
y'' accordingly.
I would strongly recommend leaving the intermediate variables in the code to reduce chances for typing errors and avoid multiple computation of the same expressions.
Code could look like this (untested)
function dz = odefunc(t,z)
x=z(1); dx=z(2); y=z(3); dy=z(4);
A = [ [-.5*L*sin(x), 1] ; [.33*L^2, -0.5*L*sin(x)] ]
b = [ [dx^2*cos(x) + (k/m)*y-g]; [-.33*L^2*C*cos(x) + .5*g*L*sin(x)] ]
d2 = A\b
dz = [ dx, d2(1), dy, d2(2) ]
end
Yes your method is correct!
I post the following code below:
%Rotating Pendulum Sym Main
clc
clear all;
%Define parameters
global M K L g C;
M = 1;
K = 25.6;
L = 1;
C = 1;
g = 9.8;
% define initial values for theta, thetad, del, deld
e_0 = 1;
ed_0 = 0;
theta_0 = 0;
thetad_0 = .5;
initialValues = [e_0, ed_0, theta_0, thetad_0];
% Set a timespan
t_initial = 0;
t_final = 36;
dt = .01;
N = (t_final - t_initial)/dt;
timeSpan = linspace(t_final, t_initial, N);
% Run ode45 to get z (theta, thetad, del, deld)
[t, z] = ode45(#RotSpngHndl, timeSpan, initialValues);
%initialize variables
e = zeros(N,1);
ed = zeros(N,1);
theta = zeros(N,1);
thetad = zeros(N,1);
T = zeros(N,1);
V = zeros(N,1);
x = zeros(N,1);
y = zeros(N,1);
for i = 1:N
e(i) = z(i, 1);
ed(i) = z(i, 2);
theta(i) = z(i, 3);
thetad(i) = z(i, 4);
T(i) = .5*M*(ed(i)^2 + (1/3)*L^2*C*sin(theta(i)) + (1/3)*L^2*thetad(i)^2 - L*ed(i)*thetad(i)*sin(theta(i)));
V(i) = -M*g*(e(i) + .5*L*cos(theta(i)));
E(i) = T(i) + V(i);
end
figure(1)
plot(t, T,'r');
hold on;
plot(t, V,'b');
plot(t,E,'y');
title('Energy');
xlabel('time(sec)');
legend('Kinetic Energy', 'Potential Energy', 'Total Energy');
Here is function handle file for ode45:
function dz = RotSpngHndl(~, z)
% Define Global Parameters
global M K L g C
A = [1, -.5*L*sin(z(3));
-.5*L*sin(z(3)), (1/3)*L^2];
b = [.5*L*z(4)^2*cos(z(3)) - (K/M)*z(1) + g;
(1/3)*L^2*C*cos(z(3)) + .5*g*L*sin(z(3))];
X = A\b;
% return column vector [ed; edd; ed; edd]
dz = [z(2);
X(1);
z(4);
X(2)];

Matlab Differential Equations Euler’s method

I need help plotting a differential equation ... it keeps coming out all funky and the graph is not what it's supposed to look like.
function [dydt] = diff(y,t)
dydt = (-3*y)+(t*(exp(-3*t)));
end
tI = 0;
yI = -0.1;
tEnd = 5;
dt = 0.5;
t = tI:dt:tEnd;
y = zeros(size(t));
y(1) = yI;
for k = 2:numel(y)
yPrime = diff(t(k-1),y(k-1));
y(k) = y(k-1) + dt*yPrime;
end
plot(t,y)
grid on
title('Engr')
xlabel('Time')
ylabel('y(t)')
legend(['dt = ' num2str(dt)])
That's my code, but the graph is not anything like what it's supposed to look like. Am I missing something like an index for the for statement?
Edit
I am getting an error:
Error using diff
Difference order N must be a positive integer scalar.
Error in diff3 (line 12)
yPrime = diff(t(k-1),y(k-1));
After fixing the errors pointed out by Danil Asotsky and horchler in the comments:
avoiding name conflict with built-in function 'diff'
changing the order of arguments to t,y.
decreasing the time-step dt to 0.1
converting ODE right-hand side to an anonymous function
(and removing unnecessary parentheses in the function definition), your code could look like this:
F = #(t,y) -3*y+t*exp(-3*t);
tI = 0;
yI = -0.1;
tEnd = 5;
dt = 0.1;
t = tI:dt:tEnd;
y = zeros(size(t));
y(1) = yI;
for k = 2:numel(y)
yPrime = F(t(k-1),y(k-1));
y(k) = y(k-1) + dt*yPrime;
end
plot(t,y)
grid on
title('Engr')
xlabel('Time')
ylabel('y(t)')
legend(['dt = ' num2str(dt)])
which performs as expected:

Cubic Spline Program

I'm trying to write a cubic spline interpolation program. I have written the program but, the graph is not coming out correctly. The spline uses natural boundary conditions(second dervative at start/end node are 0). The code is in Matlab and is shown below,
clear all
%Function to Interpolate
k = 10; %Number of Support Nodes-1
xs(1) = -1;
for j = 1:k
xs(j+1) = -1 +2*j/k; %Support Nodes(Equidistant)
end;
fs = 1./(25.*xs.^2+1); %Support Ordinates
x = [-0.99:2/(2*k):0.99]; %Places to Evaluate Function
fx = 1./(25.*x.^2+1); %Function Evaluated at x
%Cubic Spline Code(Coefficients to Calculate 2nd Derivatives)
f(1) = 2*(xs(3)-xs(1));
g(1) = xs(3)-xs(2);
r(1) = (6/(xs(3)-xs(2)))*(fs(3)-fs(2)) + (6/(xs(2)-xs(1)))*(fs(1)-fs(2));
e(1) = 0;
for i = 2:k-2
e(i) = xs(i+1)-xs(i);
f(i) = 2*(xs(i+2)-xs(i));
g(i) = xs(i+2)-xs(i+1);
r(i) = (6/(xs(i+2)-xs(i+1)))*(fs(i+2)-fs(i+1)) + ...
(6/(xs(i+1)-xs(i)))*(fs(i)-fs(i+1));
end
e(k-1) = xs(k)-xs(k-1);
f(k-1) = 2*(xs(k+1)-xs(k-1));
r(k-1) = (6/(xs(k+1)-xs(k)))*(fs(k+1)-fs(k)) + ...
(6/(xs(k)-xs(k-1)))*(fs(k-1)-fs(k));
%Tridiagonal System
i = 1;
A = zeros(k-1,k-1);
while i < size(A)+1;
A(i,i) = f(i);
if i < size(A);
A(i,i+1) = g(i);
A(i+1,i) = e(i);
end
i = i+1;
end
for i = 2:k-1 %Decomposition
e(i) = e(i)/f(i-1);
f(i) = f(i)-e(i)*g(i-1);
end
for i = 2:k-1 %Forward Substitution
r(i) = r(i)-e(i)*r(i-1);
end
xn(k-1)= r(k-1)/f(k-1);
for i = k-2:-1:1 %Back Substitution
xn(i) = (r(i)-g(i)*xn(i+1))/f(i);
end
%Interpolation
if (max(xs) <= max(x))
error('Outside Range');
end
if (min(xs) >= min(x))
error('Outside Range');
end
P = zeros(size(length(x),length(x)));
i = 1;
for Counter = 1:length(x)
for j = 1:k-1
a(j) = x(Counter)- xs(j);
end
i = find(a == min(a(a>=0)));
if i == 1
c1 = 0;
c2 = xn(1)/6/(xs(2)-xs(1));
c3 = fs(1)/(xs(2)-xs(1));
c4 = fs(2)/(xs(2)-xs(1))-xn(1)*(xs(2)-xs(1))/6;
t1 = c1*(xs(2)-x(Counter))^3;
t2 = c2*(x(Counter)-xs(1))^3;
t3 = c3*(xs(2)-x(Counter));
t4 = c4*(x(Counter)-xs(1));
P(Counter) = t1 +t2 +t3 +t4;
else
if i < k-1
c1 = xn(i-1+1)/6/(xs(i+1)-xs(i-1+1));
c2 = xn(i+1)/6/(xs(i+1)-xs(i-1+1));
c3 = fs(i-1+1)/(xs(i+1)-xs(i-1+1))-xn(i-1+1)*(xs(i+1)-xs(i-1+1))/6;
c4 = fs(i+1)/(xs(i+1)-xs(i-1+1))-xn(i+1)*(xs(i+1)-xs(i-1+1))/6;
t1 = c1*(xs(i+1)-x(Counter))^3;
t2 = c2*(x(Counter)-xs(i-1+1))^3;
t3 = c3*(xs(i+1)-x(Counter));
t4 = c4*(x(Counter)-xs(i-1+1));
P(Counter) = t1 +t2 +t3 +t4;
else
c1 = xn(i-1+1)/6/(xs(i+1)-xs(i-1+1));
c2 = 0;
c3 = fs(i-1+1)/(xs(i+1)-xs(i-1+1))-xn(i-1+1)*(xs(i+1)-xs(i-1+1))/6;
c4 = fs(i+1)/(xs(i+1)-xs(i-1+1));
t1 = c1*(xs(i+1)-x(Counter))^3;
t2 = c2*(x(Counter)-xs(i-1+1))^3;
t3 = c3*(xs(i+1)-x(Counter));
t4 = c4*(x(Counter)-xs(i-1+1));
P(Counter) = t1 +t2 +t3 +t4;
end
end
end
P = P';
P(length(x)) = NaN;
plot(x,P,x,fx)
When I run the code, the interpolation function is not symmetric and, it doesn't converge correctly. Can anyone offer any suggestions about problems in my code? Thanks.
I wrote a cubic spline package in Mathematica a long time ago. Here is my translation of that package into Matlab. Note I haven't looked at cubic splines in about 7 years, so I'm basing this off my own documentation. You should check everything I say.
The basic problem is we are given n data points (x(1), y(1)) , ... , (x(n), y(n)) and we wish to calculate a piecewise cubic interpolant. The interpolant is defined as
S(x) = { Sk(x) when x(k) <= x <= x(k+1)
{ 0 otherwise
Here Sk(x) is a cubic polynomial of the form
Sk(x) = sk0 + sk1*(x-x(k)) + sk2*(x-x(k))^2 + sk3*(x-x(k))^3
The properties of the spline are:
The spline pass through the data point Sk(x(k)) = y(k)
The spline is continuous at the end-points and thus continuous everywhere in the interpolation interval Sk(x(k+1)) = Sk+1(x(k+1))
The spline has continuous first derivative Sk'(x(k+1)) = Sk+1'(x(k+1))
The spline has continuous second derivative Sk''(x(k+1)) = Sk+1''(x(k+1))
To construct a cubic spline from a set of data point we need to solve for the coefficients
sk0, sk1, sk2 and sk3 for each of the n-1 cubic polynomials. That is a total of 4*(n-1) = 4*n - 4 unknowns. Property 1 supplies n constraints, and properties 2,3,4 each supply an additional n-2 constraints. Thus we have n + 3*(n-2) = 4*n - 6 constraints and 4*n - 4 unknowns. This leaves two degrees of freedom. We fix these degrees of freedom by setting the second derivative equal to zero at the start and end nodes.
Let m(k) = Sk''(x(k)) , h(k) = x(k+1) - x(k) and d(k) = (y(k+1) - y(k))/h(k). The following
three-term recurrence relation holds
h(k-1)*m(k-1) + 2*(h(k-1) + h(k))*m(k) + h(k)*m(k+1) = 6*(d(k) - d(k-1))
The m(k) are unknowns we wish to solve for. The h(k) and d(k) are defined by the input data.
This three-term recurrence relation defines a tridiagonal linear system. Once the m(k) are determined the coefficients for Sk are given by
sk0 = y(k)
sk1 = d(k) - h(k)*(2*m(k) + m(k-1))/6
sk2 = m(k)/2
sk3 = m(k+1) - m(k)/(6*h(k))
Okay that is all the math you need to know to completely define the algorithm to compute a cubic spline. Here it is in Matlab:
function [s0,s1,s2,s3]=cubic_spline(x,y)
if any(size(x) ~= size(y)) || size(x,2) ~= 1
error('inputs x and y must be column vectors of equal length');
end
n = length(x)
h = x(2:n) - x(1:n-1);
d = (y(2:n) - y(1:n-1))./h;
lower = h(1:end-1);
main = 2*(h(1:end-1) + h(2:end));
upper = h(2:end);
T = spdiags([lower main upper], [-1 0 1], n-2, n-2);
rhs = 6*(d(2:end)-d(1:end-1));
m = T\rhs;
% Use natural boundary conditions where second derivative
% is zero at the endpoints
m = [ 0; m; 0];
s0 = y;
s1 = d - h.*(2*m(1:end-1) + m(2:end))/6;
s2 = m/2;
s3 =(m(2:end)-m(1:end-1))./(6*h);
Here is some code to plot a cubic spline:
function plot_cubic_spline(x,s0,s1,s2,s3)
n = length(x);
inner_points = 20;
for i=1:n-1
xx = linspace(x(i),x(i+1),inner_points);
xi = repmat(x(i),1,inner_points);
yy = s0(i) + s1(i)*(xx-xi) + ...
s2(i)*(xx-xi).^2 + s3(i)*(xx - xi).^3;
plot(xx,yy,'b')
plot(x(i),0,'r');
end
Here is a function that constructs a cubic spline and plots in on the famous Runge function:
function cubic_driver(num_points)
runge = #(x) 1./(1+ 25*x.^2);
x = linspace(-1,1,num_points);
y = runge(x);
[s0,s1,s2,s3] = cubic_spline(x',y');
plot_points = 1000;
xx = linspace(-1,1,plot_points);
yy = runge(xx);
plot(xx,yy,'g');
hold on;
plot_cubic_spline(x,s0,s1,s2,s3);
You can see it in action by running the following at the Matlab prompt
>> cubic_driver(5)
>> clf
>> cubic_driver(10)
>> clf
>> cubic_driver(20)
By the time you have twenty nodes your interpolant is visually indistinguishable from the Runge function.
Some comments on the Matlab code: I don't use any for or while loops. I am able to vectorize all operations. I quickly form the sparse tridiagonal matrix with spdiags. I solve it using the backslash operator. I counting on Tim Davis's UMFPACK to handle the decomposition and forward and backward solves.
Hope that helps. The code is available as a gist on github https://gist.github.com/1269709
There was a bug in spline function, generated (n-2) by (n-2) should be symmetric:
lower = h(2:end);
main = 2*(h(1:end-1) + h(2:end));
upper = h(1:end-1);
http://www.mpi-hd.mpg.de/astrophysik/HEA/internal/Numerical_Recipes/f3-3.pdf