Symmetrical 0,1 matrices [closed] - matlab

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 6 years ago.
Improve this question
I need to create all 0,1 NxN matrices with zero diagonal. Matrices must be symmetrical. In every column and row must be at least one 1. Any ideas that can help?

getting all possible matrices of that form
The idea is that each matrix of this type with size NxN is defined by its upper diagonal values. Therefore, iterating over all the possible patterns for the upper diagonal part, and coping these values to the lower diagonal will do the trick.
Code example:
%defines N
N = 3;
%calculates degree of freedom
nValuesToRand = ((N*N) - N)/2;
%generate all possible binary patterns of size nValuesToRand
B = dec2bin(0:2^nValuesToRand - 1);
%masks of lower and upper diagonal - will be used later on
upperTriagonalMask = logical(triu(ones(N,N)) - eye(N));
lowerTriagonalMask = logical(tril(ones(N,N)) - eye(N));
%generates a new cell to hold the matrices
allMatrices = cell(size(B,1),1);
%iterates over all possible patterns
for i=1:size(B,1)
%generates a new matrix
mat = zeros(N,N);
%initializes its upper diagonal according to the binary pattern
mat(upperTriagonalMask) = logical(B(i,:)- 48);
%copies the upper triagonal to the lower triagonal (for symmetricality)
upperTriagonalTransposed = triu(mat)';
mat(lowerTriagonalMask) = upperTriagonalTransposed(lowerTriagonalMask);
%ignores illegal Matrices
if sum(sum(mat,2)==0)>0
continue;
end
%saves mat in the cell
allMatrices{i} = mat;
end
%cleanes cell
allMatrices = allMatrices(~cellfun(#isempty, allMatrices));
Random matrix generation
generating all possible matrices for large N values is computationally hard.
If you want to generate a matrix randomly, you can try the following approach:
%Dimension size
N = 6;
%Probability for appearance of 0
P = 0.5;
%A mask of the lower diagonal, to be used later on
lowerTriagonalMask = logical(tril(ones(N,N)));
%initializes the matrix
mat = zeros(N,N);
%runs the loop as long as the matrix is not valid
while (sum(mat,2)==0)>0
%defines a random binary matrix
mat = rand(N,N) > P;
%zero out the diagonal values
mat(logical(eye(N))) = 0;
%copies the upper triagonal to the lower triagonal (for symmetricality)
upperTriagonalTransposed = triu(mat)';
mat(lowerTriagonalMask) = upperTriagonalTransposed(lowerTriagonalMask);
end
%testing
issymmetric(double(mat))
mat
result:
ans =
1
mat =
0 1 1 1 0 0
1 0 1 1 1 1
1 1 0 0 0 1
1 1 0 0 0 1
0 1 0 0 0 1
0 1 1 1 1 0

Related

How to get indexes of logical matrix without using find in matlab?

Let's assume my matrix A is the output of comparison function i.e. logical matrix having values 0 and 1's only. For a small matrix of size 3*4, we might have something like:
A =
1 1 0 0
0 0 1 0
0 0 1 1
Now, I am generating another matrix B which is of the same size as A, but its rows are filled with indexes of A and any leftover values in each row are set to zero.
B =
1 2 0 0
3 0 0 0
3 4 0 0
Currently, I am using find function on each row of A to get matrix B. Complete code can be written as:
A=[1,1,0,0;0,0,1,0;0,0,1,1];
[rows,columns]=size(A);
B=zeros(rows,columns);
for i=1:rows
currRow=find(A(i,:));
B(i,1:length(currRow))=currRow;
end
For large martixes, "find" function is taking time in the calculation as per Matlab Profiler. Is there any way to generate matrix B faster?
Note:
Matrix A is having more than 1000 columns in each row but non-zero elements are never more than 50. Here, I am taking Matrix B as the same size as A but Matrix B can be of much smaller size column-wise.
I would suggest using parfor, but the overhead is too much here, and there are more issues with it, so it is not a good solution.
rows = 5e5;
cols = 1000;
A = rand(rows, cols) < 0.050;
I = uint16(1:cols);
B = zeros(size(A), 'uint16');
% [r,c] = find(A);
tic
for i=1:rows
% currRow = find(A(i,:));
currRow = I(A(i,:));
B(i,1:length(currRow)) = currRow;
end
toc
#Cris suggests replacing find with an indexing operation. It increases the performance by about 10%.
Apparently, there is not a better optimization unless B is required to be in that specific form you tell. I suggest using [r,c] = find(A); if the indexes are not required in a matrix form.

Finding equal rows in Matlab

I have a matrix suppX in Matlab with size GxN and a matrix A with size MxN. I would like your help to construct a matrix Xresponse with size GxM with Xresponse(g,m)=1 if the row A(m,:) is equal to the row suppX(g,:) and zero otherwise.
Let me explain better with an example.
suppX=[1 2 3 4;
5 6 7 8;
9 10 11 12]; %GxN
A=[1 2 3 4;
1 2 3 4;
9 10 11 12;
1 2 3 4]; %MxN
Xresponse=[1 1 0 1;
0 0 0 0;
0 0 1 0]; %GxM
I have written a code that does what I want.
Xresponsemy=zeros(size(suppX,1), size(A,1));
for x=1:size(suppX,1)
Xresponsemy(x,:)=ismember(A, suppX(x,:), 'rows').';
end
My code uses a loop. I would like to avoid this because in my real case this piece of code is part of another big loop. Do you have suggestions without looping?
One way to do this would be to treat each matrix as vectors in N dimensional space and you can find the L2 norm (or the Euclidean distance) of each vector. After, check if the distance is 0. If it is, then you have a match. Specifically, you can create a matrix such that element (i,j) in this matrix calculates the distance between row i in one matrix to row j in the other matrix.
You can treat your problem by modifying the distance matrix that results from this problem such that 1 means the two vectors completely similar and 0 otherwise.
This post should be of interest: Efficiently compute pairwise squared Euclidean distance in Matlab.
I would specifically look at the answer by Shai Bagon that uses matrix multiplication and broadcasting. You would then modify it so that you find distances that would be equal to 0:
nA = sum(A.^2, 2); % norm of A's elements
nB = sum(suppX.^2, 2); % norm of B's elements
Xresponse = bsxfun(#plus, nB, nA.') - 2 * suppX * A.';
Xresponse = Xresponse == 0;
We get:
Xresponse =
3×4 logical array
1 1 0 1
0 0 0 0
0 0 1 0
Note on floating-point efficiency
Because you are using ismember in your implementation, it's implicit to me that you expect all values to be integer. In this case, you can very much compare directly with the zero distance without loss of accuracy. If you intend to move to floating-point, you should always compare with some small threshold instead of 0, like Xresponse = Xresponse <= 1e-10; or something to that effect. I don't believe that is needed for your scenario.
Here's an alternative to #rayryeng's answer: reduce each row of the two matrices to a unique identifier using the third output of unique with the 'rows' input flag, and then compare the identifiers with singleton expansion (broadcast) using bsxfun:
[~, ~, w] = unique([A; suppX], 'rows');
Xresponse = bsxfun(#eq, w(1:size(A,1)).', w(size(A,1)+1:end));

Creating a weight adjacency matrix

I need to assign weights to edges of a graph, from the following papers:
"Fast linear iterations for distributed averaging" by L. Xiao and S. Boyd
"Convex Optimization of Graph Laplacian Eigenvalues" by S. Boyd
I have the adjacency matrix for my graph (a 50 by 50 matrix), with 512 non-zero values.
I also have a 256 by 1 vector with the optimal weights.
For the software I'm using, I need a 50 by 50 matrix with the weight of edge (i,j) in the relevant position of the adjacency matrix (and with the opposite sign for edge (j,i)).
My attempt is below, but I can't get it working.
function weights = construct_weight_mtx(weight_list, Adj)
weights = zeros(size(Adj));
positions = find(Adj);
for i=1:length(positions)/2
if Adj(i) == 1
weights(i) = weight_list(i);
end
end
weights = weights - weights';
find(Adj) == find(weights);
end
You're finding the nonzero positions in the original adjacency matrix, but you're finding all of them. To get around this, you then take only the first half of those positions.
for i=1:length(positions)/2 ...
Unfortunately, this takes the indices from complete columns rather than just the positions below the diagonal. So if your matrix was all 1's, you'd be taking:
1 1 1 0 0 ...
1 1 1 0 0 ...
1 1 1 0 0 ...
...
instead of:
1 0 0 0 0 ...
1 1 0 0 0 ...
1 1 1 0 0 ...
...
To take the correct values, we just take the lower triangular portion of Adj and then find the nonzero positions of that:
positions = find(tril(Adj));
Now we have only the 256 positions below the diagonal and we can loop over all of the positions. Next, we need to fix the assignment in the loop:
for i=1:length(positions)
if Adj(i) == 1 %// we already know Adj(i) == 1 for all indices in positions
weights(i) = weight_list(i); %// we need to update weights(positions(i))
end
end
So this becomes:
for i=1:length(positions)
weights(positions(i)) = weight_list(i);
end
But if all we're doing is assigning 256 values to 256 positions, we can do that without a for loop:
weights(position) = weight_list;
Note that the elements of weight_list must be in the proper order with the nonzero elements of the lower-triangular portion ordered by columns.
Completed code:
function weights = construct_weight_mtx(weight_list, Adj)
weights = zeros(size(Adj));
positions = find(tril(Adj));
weights(positions) = weight_list;
weights = weights - weights.'; %// ' is complex conjugate; not a big deal here, but something to know
find(Adj) == find(weights); %// Not sure what this is meant to do; maybe an assert?
end

Hash function for binary matrices (Matlab)

I am working with big binary 2D matrices that are stored in a vector and every time a new matrix is obtained it is added to this vector, that can reach sizes of about 500 or 1000 elements. What I ask is if there is a more efficient way to store this matrices, maybe with a hash function. When there is a coincidence of two elements in the vector what I need is their position in the vector, not the matrix itself. I am working with Matlab.
this is executed after a new matrix is obtained:
states = [states new_state];
for i = 1:size(states,3)-1
if isequal(states(:,:,end), states(:,:,i))
found = 1;
num = size(states,3) - i;
break
end
end
matrices are binary:
new_state = [1 0 0 0; 0 0 0 1; 1 1 0 1; 1 1 0 0];

Eliminating zeros in a matrix - Matlab

Hi I have the following matrix:
A= 1 2 3;
0 4 0;
1 0 9
I want matrix A to be:
A= 1 2 3;
1 4 9
PS - semicolon represents the end of each column and new column starts.
How can I do that in Matlab 2014a? Any help?
Thanks
The problem you run into with your problem statement is the fact that you don't know the shape of the "squeezed" matrix ahead of time - and in particular, you cannot know whether the number of nonzero elements is a multiple of either the rows or columns of the original matrix.
As was pointed out, there is a simple function, nonzeros, that returns the nonzero elements of the input, ordered by columns. In your case,
A = [1 2 3;
0 4 0;
1 0 9];
B = nonzeros(A)
produces
1
1
2
4
3
9
What you wanted was
1 2 3
1 4 9
which happens to be what you get when you "squeeze out" the zeros by column. This would be obtained (when the number of zeros in each column is the same) with
reshape(B, 2, 3);
I think it would be better to assume that the number of elements may not be the same in each column - then you need to create a sparse array. That is actually very easy:
S = sparse(A);
The resulting object S is a sparse array - that is, it contains only the non-zero elements. It is very efficient (both for storage and computation) when lots of elements are zero: once more than 1/3 of the elements are nonzero it quickly becomes slower / bigger. But it has the advantage of maintaining the shape of your matrix regardless of the distribution of zeros.
A more robust solution would have to check the number of nonzero elements in each column and decide what the shape of the final matrix will be:
cc = sum(A~=0);
will count the number of nonzero elements in each column of the matrix.
nmin = min(cc);
nmax = max(cc);
finds the smallest and largest number of nonzero elements in any column
[i j s] = find(A); % the i, j coordinates and value of nonzero elements of A
nc = size(A, 2); % number of columns
B = zeros(nmax, nc);
for k = 1:nc
B(1:cc(k), k) = s(j == k);
end
Now B has all the nonzero elements: for columns with fewer nonzero elements, there will be zero padding at the end. Finally you can decide if / how much you want to trim your matrix B - if you want to have no zeros at all, you will need to trim some values from the longer columns. For example:
B = B(1:nmin, :);
Simple solution:
A = [1 2 3;0 4 0;1 0 9]
A =
1 2 3
0 4 0
1 0 9
A(A==0) = [];
A =
1 1 2 4 3 9
reshape(A,2,3)
ans =
1 2 3
1 4 9
It's very simple though and might be slow. Do you need to perform this operation on very large/many matrices?
From your question it's not clear what you want (how to arrange the non-zero values, specially if the number of zeros in each column is not the same). Maybe this:
A = reshape(nonzeros(A),[],size(A,2));
Matlab's logical indexing is extremely powerful. The best way to do this is create a logical array:
>> lZeros = A==0
then use this logical array to index into A and delete these zeros
>> A(lZeros) = []
Finally, reshape the array to your desired size using the built in reshape command
>> A = reshape(A, 2, 3)