Hi I have the following matrix:
A= 1 2 3;
0 4 0;
1 0 9
I want matrix A to be:
A= 1 2 3;
1 4 9
PS - semicolon represents the end of each column and new column starts.
How can I do that in Matlab 2014a? Any help?
Thanks
The problem you run into with your problem statement is the fact that you don't know the shape of the "squeezed" matrix ahead of time - and in particular, you cannot know whether the number of nonzero elements is a multiple of either the rows or columns of the original matrix.
As was pointed out, there is a simple function, nonzeros, that returns the nonzero elements of the input, ordered by columns. In your case,
A = [1 2 3;
0 4 0;
1 0 9];
B = nonzeros(A)
produces
1
1
2
4
3
9
What you wanted was
1 2 3
1 4 9
which happens to be what you get when you "squeeze out" the zeros by column. This would be obtained (when the number of zeros in each column is the same) with
reshape(B, 2, 3);
I think it would be better to assume that the number of elements may not be the same in each column - then you need to create a sparse array. That is actually very easy:
S = sparse(A);
The resulting object S is a sparse array - that is, it contains only the non-zero elements. It is very efficient (both for storage and computation) when lots of elements are zero: once more than 1/3 of the elements are nonzero it quickly becomes slower / bigger. But it has the advantage of maintaining the shape of your matrix regardless of the distribution of zeros.
A more robust solution would have to check the number of nonzero elements in each column and decide what the shape of the final matrix will be:
cc = sum(A~=0);
will count the number of nonzero elements in each column of the matrix.
nmin = min(cc);
nmax = max(cc);
finds the smallest and largest number of nonzero elements in any column
[i j s] = find(A); % the i, j coordinates and value of nonzero elements of A
nc = size(A, 2); % number of columns
B = zeros(nmax, nc);
for k = 1:nc
B(1:cc(k), k) = s(j == k);
end
Now B has all the nonzero elements: for columns with fewer nonzero elements, there will be zero padding at the end. Finally you can decide if / how much you want to trim your matrix B - if you want to have no zeros at all, you will need to trim some values from the longer columns. For example:
B = B(1:nmin, :);
Simple solution:
A = [1 2 3;0 4 0;1 0 9]
A =
1 2 3
0 4 0
1 0 9
A(A==0) = [];
A =
1 1 2 4 3 9
reshape(A,2,3)
ans =
1 2 3
1 4 9
It's very simple though and might be slow. Do you need to perform this operation on very large/many matrices?
From your question it's not clear what you want (how to arrange the non-zero values, specially if the number of zeros in each column is not the same). Maybe this:
A = reshape(nonzeros(A),[],size(A,2));
Matlab's logical indexing is extremely powerful. The best way to do this is create a logical array:
>> lZeros = A==0
then use this logical array to index into A and delete these zeros
>> A(lZeros) = []
Finally, reshape the array to your desired size using the built in reshape command
>> A = reshape(A, 2, 3)
Related
I'm attempting the following as a hobby, not as homework. In Computer Programming with MATLAB: J. Michael Fitpatrick and Akos Ledeczi, there is a practice problem that asks this:
Write a function called alternate that takes two positive integers, n and m, as input arguments (the function does not have to check the format of the input) and returns one matrix as an output argument. Each element of the n-by-m output matrix for which the sum of its indices is even is 1.
All other elements are zero.
A previous problem was similar, and I wrote a very simple function that does what it asks:
function A = alternate(n,m)
A(1:n,1:m)=0;
A(2:2:n,2:2:m)=1;
A(1:2:n,1:2:m)=1;
end
Now my question is, is that good enough? It outputs exactly what it asks for, but it's not checking for the sum. So far we haven't discussed nested if statements or anything of that sort, we just started going over very basic functions. I feel like giving it more functionality would allow it to be recycled better for future use.
Great to see you're learning, step 1 in learning any programming language should be to ensure you always add relevant comments! This helps you, and anyone reading your code. So the first improvement would be this:
function A = alternate(n,m)
% Function to return an n*m matrix, which is 1 when the sum of the indices is even
A(1:n,1:m)=0; % Create the n*m array of zeros
A(2:2:n,2:2:m)=1; % All elements with even row and col indices: even+even=even
A(1:2:n,1:2:m)=1; % All elements with odd row and col indicies: odd+odd=even
end
You can, however, make this more concise (discounting comments), and perhaps more clearly relate to the brief:
function A = alternate(n,m)
% Function to return an n*m matrix, which is 1 when the sum of the indices is even
% Sum of row and col indices. Uses implicit expansion (R2016b+) to form
% a matrix from a row and column array
idx = (1:n).' + (1:m);
% We want 1 when x is even, 0 when odd. mod(x,2) is the opposite, so 1-mod(x,2) works:
A = 1 - mod( idx, 2 );
end
Both functions do the same thing, and it's personal preference (and performance related for large problems) which you should use.
I'd argue that, even without comments, the alternative I've written more clearly does what it says on the tin. You don't have to know the brief to understand you're looking for the even index sums, since I've done the sum and tested if even. Your code requires interpretation.
It can also be written as a one-liner, whereas the indexing approach can't be (as you've done it).
A = 1 - mod( (1:n).' + (1:m), 2 ); % 1 when row + column index is even
Your function works fine and output the desired result, let me propose you an alternative:
function A = alternate(n,m)
A = zeros( n , m ) ; % pre-allocate result (all elements at 0)
[x,y] = meshgrid(1:m,1:n) ; % define a grid of indices
A(mod(x+y,2)==0) = 1 ; % modify elements of "A" whose indices verify the condition
end
Which returns:
>> alternate(4,5)
ans =
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
initialisation:
The first line is the equivalent to your first line, but it is the cannonical MATLAB way of creating a new matrix.
It uses the function zeros(n,m).
Note that MATLAB has similar functions to create and preallocate matrices for different types, for examples:
ones(n,m) Create
a matrix of double, size [n,m] with all elements set to 1
nan(n,m) Create a
matrix of double, size [n,m] with all elements set to NaN
false(n,m) Create a
matrix of boolean size [n,m] with all elements set to false
There are several other matrix construction predefined function, some more specialised (like eye), so before trying hard to generate your initial matrix, you can look in the documentation if a specialised function exist for your case.
indices
The second line generate 2 matrices x and y which will be the indices of A. It uses the function meshgrid. For example in the case shown above, x and y look like:
| x = | y = |
| 1 2 3 4 5 | 1 1 1 1 1 |
| 1 2 3 4 5 | 2 2 2 2 2 |
| 1 2 3 4 5 | 3 3 3 3 3 |
| 1 2 3 4 5 | 4 4 4 4 4 |
odd/even indices
To calculate the sum of the indices, it is now trivial in MATLAB, as easy as:
>> x+y
ans =
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
Now we just need to know which ones are even. For this we'll use the modulo operator (mod) on this summed matrix:
>> mod(x+y,2)==0
ans =
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
This result logical matrix is the same size as A and contain 1 where the sum of the indices is even, and 0 otherwise. We can use this logical matrix to modify only the elements of A which satisfied the condition:
>> A(mod(x+y,2)==0) = 1
A =
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
Note that in this case the logical matrix found in the previous step would have been ok since the value to assign to the special indices is 1, which is the same as the numeric representation of true for MATLAB. In case you wanted to assign a different value, but the same indices condition, simply replace the last assignment:
A(mod(x+y,2)==0) = your_target_value ;
I don't like spoiling the learning. So let me just give you some hints.
Matlab is very efficient if you do operations on vectors, not on individual elements. So, why not creating two matrices (e.g. N, M) that holds all the indices? Have a look at the meshgrid() function.
Than you might be able find all positions with an even sum of indices in one line.
Second hint is that the outputs of a logic operation, e.g. B = A==4, yields a logic matrix. You can convert this to a matrix of zeros by using B = double(B).
Have fun!
I have a matrix suppX in Matlab with size GxN and a matrix A with size MxN. I would like your help to construct a matrix Xresponse with size GxM with Xresponse(g,m)=1 if the row A(m,:) is equal to the row suppX(g,:) and zero otherwise.
Let me explain better with an example.
suppX=[1 2 3 4;
5 6 7 8;
9 10 11 12]; %GxN
A=[1 2 3 4;
1 2 3 4;
9 10 11 12;
1 2 3 4]; %MxN
Xresponse=[1 1 0 1;
0 0 0 0;
0 0 1 0]; %GxM
I have written a code that does what I want.
Xresponsemy=zeros(size(suppX,1), size(A,1));
for x=1:size(suppX,1)
Xresponsemy(x,:)=ismember(A, suppX(x,:), 'rows').';
end
My code uses a loop. I would like to avoid this because in my real case this piece of code is part of another big loop. Do you have suggestions without looping?
One way to do this would be to treat each matrix as vectors in N dimensional space and you can find the L2 norm (or the Euclidean distance) of each vector. After, check if the distance is 0. If it is, then you have a match. Specifically, you can create a matrix such that element (i,j) in this matrix calculates the distance between row i in one matrix to row j in the other matrix.
You can treat your problem by modifying the distance matrix that results from this problem such that 1 means the two vectors completely similar and 0 otherwise.
This post should be of interest: Efficiently compute pairwise squared Euclidean distance in Matlab.
I would specifically look at the answer by Shai Bagon that uses matrix multiplication and broadcasting. You would then modify it so that you find distances that would be equal to 0:
nA = sum(A.^2, 2); % norm of A's elements
nB = sum(suppX.^2, 2); % norm of B's elements
Xresponse = bsxfun(#plus, nB, nA.') - 2 * suppX * A.';
Xresponse = Xresponse == 0;
We get:
Xresponse =
3×4 logical array
1 1 0 1
0 0 0 0
0 0 1 0
Note on floating-point efficiency
Because you are using ismember in your implementation, it's implicit to me that you expect all values to be integer. In this case, you can very much compare directly with the zero distance without loss of accuracy. If you intend to move to floating-point, you should always compare with some small threshold instead of 0, like Xresponse = Xresponse <= 1e-10; or something to that effect. I don't believe that is needed for your scenario.
Here's an alternative to #rayryeng's answer: reduce each row of the two matrices to a unique identifier using the third output of unique with the 'rows' input flag, and then compare the identifiers with singleton expansion (broadcast) using bsxfun:
[~, ~, w] = unique([A; suppX], 'rows');
Xresponse = bsxfun(#eq, w(1:size(A,1)).', w(size(A,1)+1:end));
New to MatLab here (R2015a, Mac OS 10.10.5), and hoping to find a solution to this indexing problem.
I want to change the values of a large 2D matrix, based on one vector of row indices and one of column indices. For a very simple example, if I have a 3 x 2 matrix of zeros:
A = zeros(3, 2)
0 0
0 0
0 0
I want to change A(1, 1) = 1, and A(2, 2) = 1, and A(3, 1) = 1, such that A is now
1 0
0 1
1 0
And I want to do this using vectors to indicate the row and column indices:
rows = [1 2 3];
cols = [1 2 1];
Is there a way to do this without looping? Remember, this is a toy example that needs to work on a very large 2D matrix. For extra credit, can I also include a vector that indicates which value to insert, instead of fixing it at 1?
My looping approach is easy, but slow:
for i = 1:length(rows)
A(rows(i), cols(i)) = 1;
end
sub2ind can help here,
A = zeros(3,2)
rows = [1 2 3];
cols = [1 2 1];
A(sub2ind(size(A),rows,cols))=1
A =
1 0
0 1
1 0
with a vector to 'insert'
b = [1,2,3];
A(sub2ind(size(A),rows,cols))=b
A =
1 0
0 2
3 0
I found this answer online when checking on the speed of sub2ind.
idx = rows + (cols - 1) * size(A, 1);
therefore
A(idx) = 1 % or b
5 tests on a big matrix (~ 5 second operations) shows it's 20% faster than sub2ind.
There is code for an n-dimensional problem here too.
What you have is basically a sparse definition of a matrix. Thus, an alternative to sub2ind is sparse. It will create a sparse matrix, use full to convert it to a full matrix.
A=full(sparse(rows,cols,1,3,2))
How can I construct a scrambled matrix with 128 rows and 32 columns in vb.net or Matlab?
Entries of the matrix are numbers between 1 and 32 with the condition that each row mustn't contain duplicate elements and rows mustn't be duplicates.
This is similar to #thewaywewalk's answer, but makes sure that the matrix has no repeated rows by testing if it does and in that case generating a new matrix:
done = 0;
while ~done
[~, matrix] = sort(rand(128,32),2);
%// generate each row as a random permutation, independently of other rows.
%// This line was inspired by randperm code
done = size(unique(matrix,'rows'),1) == 128;
%// in the event that there are repeated rows: generate matrix again
end
If my computations are correct, the probability that the matrix has repteated rows (and thus has to be generated again) is less than
>> 128*127/factorial(32)
ans =
6.1779e-032
Hey, it's more likely that a cosmic ray will spoil a given run of the program! So I guess you can safely remove the while loop :-)
With randperm you can generate one row:
row = randperm(32)
if this vector wouldn't be that long you could just use perms to find all permutations:
B = perms(randperm(32))
but it's memory-wise too much! ( 32! = 2.6313e+35 rows )
so you can use a little loop:
N = 200;
A = zeros(N,32);
for ii = 1:N
A(ii,:) = randperm(32);
end
B = unique(A, 'rows');
B = B(1:128,:);
For my tests it was sufficient to use N = 128 directly and skip the last two lines, because with 2.6313e+35 possibly permutations the probability that you get a correct matrix with the first try is very high. But to be sure that there are no row-duplicates choose a higher number and select the first 128 rows finally. In case the input vector is relatively short and the number of desired rows close to the total number of possible permutations use the proposed perms(randperm( n )).
small example for intergers from 1 to 4 and a selection of 10 out of 24 possible permutations:
N = 20;
A = zeros(N,4);
for ii = 1:N
A(ii,:) = randperm(4);
end
B = unique(A, 'rows');
B = B(1:10,:);
returns:
B =
1 2 3 4
1 2 4 3
1 3 4 2
2 3 1 4
2 3 4 1
2 4 1 3
2 4 3 1
3 1 2 4
3 1 4 2
3 2 1 4
some additional remarks for the choice of N:
I made some test runs, where I used the loop above to find all permutations like perms does. For vector lengths of n=4 to n=7 and in each case N = factorial(n): 60-80% of the rows are unique.
So for small n I would recommend to choose N as follows to be absolutely on the safe side:
N = min( [Q factorial(n)] )*2;
where Q is the number of permutations you want. For bigger n you either run out of memory while searching for all permutations, or the desired subset is so small compared to the number of all possible permutations that repetition is very unlikely! (Cosmic Ray theory linked by Luis Mendo)
Your requirements are very loose and allow many different possibilities. The most efficient solution I can think off that meets these requirements is as follows:
p = perms(1:6);
[p(1:128,:) repmat(7:32,128,1)]
Suppose now I have two vectors of same length:
A = [1 2 2 1];
B = [2 1 2 2];
I would like to create a matrix C whose dim=m*n, m=max(A), n=max(B).
C = zeros(m,n);
for i = 1:length(A)
u = A(i);
v = B(i);
C(u,v)=C(u,v)+1;
end
and get
C =[0 2;
1 1]
More precisely, we treat the according indices in A and B as rows and columns in C, and C(u,v) is the number of elements in {k | A(i)=u and B(i)=v, i = 1,2,...,length(A)}
Is there a faster way to do that?
Yes. Use sparse. It assembles (i.e., sums up) the matrix values for repeating row-column pairs for you. You need an additional vector with the values that will be assembled into the matrix entries. If you use ones(size(A)), you will have exactly what you need - counting of repeated row-column pairs
spA=sparse(A, B, ones(size(A)));
full(spA)
ans =
0 2
1 1
The same can be obtained by simply passing scalar 1 to sparse function instead of a vector of values.
For matrices that have a large number of zero entries this is absolutely crucial that you use sparse storage. Another function you could use is accumarray. It can essentially do the same thing, but also works on dense matrix structure:
AA=accumarray([A;B]', 1);
AA =
0 2
1 1
You can pass size argument to accumarray if you want to create a matrix of specific size
AA=accumarray([A;B]', 1, [2 3]);
AA =
0 2 0
1 1 0
Note that you can actually also make it produce sparse matrices, and use a different operator in assembly (i.e., not necessarily a sum)
AA=accumarray([A;B]', 1, [2 3], #sum, 0, true)
will produce a sparse matrix (last parameter set to true) using sum for assembly and 0 as a fill value, i.e. a value which is used in cases a given row-column pair does not exist in A/B.