Count how many documents contain a field - mongodb

I have these three MongoDB documents:
{
"_id" : ObjectId("571094afc2bcfe430ddd0815"),
"name" : "Barry",
"surname" : "Allen",
"address" : [
{
"street" : "Red",
"number" : NumberInt(66),
"city" : "Central City"
},
{
"street" : "Yellow",
"number" : NumberInt(7),
"city" : "Gotham City"
}
]
}
{
"_id" : ObjectId("57109504c2bcfe430ddd0816"),
"name" : "Oliver",
"surname" : "Queen",
"address" : {
"street" : "Green",
"number" : NumberInt(66),
"city" : "Star City"
}
}
{
"_id" : ObjectId("5710953ac2bcfe430ddd0817"),
"name" : "Tudof",
"surname" : "Unknown",
"address" : "homeless"
}
The address field is an Array of Objects in the first document, an Object in the second and a String in the third.
My target is to find how many documents of my collection containinig the field address.street. In this case the right count is 1 but with my query I get two:
db.coll.find({"address.street":{"$exists":1}}).count()
I also tried map/reduce. It works but it is slower; so if it is possible, I would avoid it.

The distinction here is that the .count() operation is actually "correct" in returning the "document" count where the field is present. So the general considerations break down to:
If you just want to exlude the documents with the array field
Then the most effective way of excluding those documents where the "street" was a property of the "address" as an "array", then just use the dot-notation property of looking for the 0 index to not exist in the exlcusion:
db.coll.find({
"address.street": { "$exists": true },
"address.0": { "$exists": false }
}).count()
As a natively coded operator test in both cases $exists does the correct job and efficiently.
If you intended to count field occurences
If what you are actually asking is the "field count", where some "documents" contain array entries where that "field" may be present several times.
For that you need the aggregation framework or mapReduce like you mention. MapReduce uses JavaScript based processing and is therefore going to be considerably slower than the .count() operation. The aggregation framework also needs to calculate and "will" be slower than .count(), but not by as much as mapReduce.
In MongoDB 3.2 you get some help here by the expanded ability of $sum to work on an array of values as well as being an grouping accumulator. The other helper here is $isArray which allows a different processing method via $map when the data is in fact "an array":
db.coll.aggregate([
{ "$group": {
"_id": null,
"count": {
"$sum": {
"$sum": {
"$cond": {
"if": { "$isArray": "$address" },
"then": {
"$map": {
"input": "$address",
"as": "el",
"in": {
"$cond": {
"if": { "$ifNull": [ "$$el.street", false ] },
"then": 1,
"else": 0
}
}
}
},
"else": {
"$cond": {
"if": { "$ifNull": [ "$address.street", false ] },
"then": 1,
"else": 0
}
}
}
}
}
}
}}
])
Earlier versions hinge on a bit more conditional processing in order to treat the array and non-array data differently, and generally require $unwind to process array entries.
Either transposing the array via $map with MongoDB 2.6:
db.coll.aggregate([
{ "$project": {
"address": {
"$cond": {
"if": { "$ifNull": [ "$address.0", false ] },
"then": "$address",
"else": {
"$map": {
"input": ["A"],
"as": "el",
"in": "$address"
}
}
}
}
}},
{ "$unwind": "$address" },
{ "$group": {
"_id": null,
"count": {
"$sum": {
"$cond": {
"if": { "$ifNull": [ "$address.street", false ] },
"then": 1,
"else": 0
}
}
}
}}
])
Or providing conditional selection with MongoDB 2.2 or 2.4:
db.coll.aggregate([
{ "$group": {
"_id": "$_id",
"address": {
"$first": {
"$cond": [
{ "$ifNull": [ "$address.0", false ] },
"$address",
{ "$const": [null] }
]
}
},
"other": {
"$push": {
"$cond": [
{ "$ifNull": [ "$address.0", false ] },
null,
"$address"
]
}
},
"has": {
"$first": {
"$cond": [
{ "$ifNull": [ "$address.0", false ] },
1,
0
]
}
}
}},
{ "$unwind": "$address" },
{ "$unwind": "$other" },
{ "$group": {
"_id": null,
"count": {
"$sum": {
"$cond": [
{ "$eq": [ "$has", 1 ] },
{ "$cond": [
{ "$ifNull": [ "$address.street", false ] },
1,
0
]},
{ "$cond": [
{ "$ifNull": [ "$other.street", false ] },
1,
0
]}
]
}
}
}}
])
So the latter form "should" perform a bit better than mapReduce, but probably not by much.
In all cases the logic falls to using $ifNull as the "logical" form of $exists for the aggregation framework. Paired with $cond, a "truthfull" result is obtained when the property actually exsists, and a false value is returned when it is not. This determines whether 1 or 0 is returned respectively to the overall accumulation via $sum.
Ideally you have the modern version that can do this in a single $group pipeline stage, but otherwise you need the longer path.

Can you try this:
db.getCollection('collection_name').find({
"address.street":{"$exists":1},
"$where": "Array.isArray(this.address) == false && typeof this.address === 'object'"
});
In where clause, we are excluding if address is array and
Including address if it's type is object.

Related

MongoDB: How to get add filter main collection by second collection using $lookup [duplicate]

How can I add a filter after an $lookup or is there any other method to do this?
My data collection test is:
{ "_id" : ObjectId("570557d4094a4514fc1291d6"), "id" : 100, "value" : "0", "contain" : [ ] }
{ "_id" : ObjectId("570557d4094a4514fc1291d7"), "id" : 110, "value" : "1", "contain" : [ 100 ] }
{ "_id" : ObjectId("570557d4094a4514fc1291d8"), "id" : 120, "value" : "1", "contain" : [ 100 ] }
{ "_id" : ObjectId("570557d4094a4514fc1291d9"), "id" : 121, "value" : "2", "contain" : [ 100, 120 ] }
I select id 100 and aggregate the childs:
db.test.aggregate([ {
$match : {
id: 100
}
}, {
$lookup : {
from : "test",
localField : "id",
foreignField : "contain",
as : "childs"
}
}]);
I get back:
{
"_id":ObjectId("570557d4094a4514fc1291d6"),
"id":100,
"value":"0",
"contain":[ ],
"childs":[ {
"_id":ObjectId("570557d4094a4514fc1291d7"),
"id":110,
"value":"1",
"contain":[ 100 ]
},
{
"_id":ObjectId("570557d4094a4514fc1291d8"),
"id":120,
"value":"1",
"contain":[ 100 ]
},
{
"_id":ObjectId("570557d4094a4514fc1291d9"),
"id":121,
"value":"2",
"contain":[ 100, 120 ]
}
]
}
But I want only childs that match with "value: 1"
At the end I expect this result:
{
"_id":ObjectId("570557d4094a4514fc1291d6"),
"id":100,
"value":"0",
"contain":[ ],
"childs":[ {
"_id":ObjectId("570557d4094a4514fc1291d7"),
"id":110,
"value":"1",
"contain":[ 100 ]
},
{
"_id":ObjectId("570557d4094a4514fc1291d8"),
"id":120,
"value":"1",
"contain":[ 100 ]
}
]
}
The question here is actually about something different and does not need $lookup at all. But for anyone arriving here purely from the title of "filtering after $lookup" then these are the techniques for you:
MongoDB 3.6 - Sub-pipeline
db.test.aggregate([
{ "$match": { "id": 100 } },
{ "$lookup": {
"from": "test",
"let": { "id": "$id" },
"pipeline": [
{ "$match": {
"value": "1",
"$expr": { "$in": [ "$$id", "$contain" ] }
}}
],
"as": "childs"
}}
])
Earlier - $lookup + $unwind + $match coalescence
db.test.aggregate([
{ "$match": { "id": 100 } },
{ "$lookup": {
"from": "test",
"localField": "id",
"foreignField": "contain",
"as": "childs"
}},
{ "$unwind": "$childs" },
{ "$match": { "childs.value": "1" } },
{ "$group": {
"_id": "$_id",
"id": { "$first": "$id" },
"value": { "$first": "$value" },
"contain": { "$first": "$contain" },
"childs": { "$push": "$childs" }
}}
])
If you question why would you $unwind as opposed to using $filter on the array, then read Aggregate $lookup Total size of documents in matching pipeline exceeds maximum document size for all the detail on why this is generally necessary and far more optimal.
For releases of MongoDB 3.6 and onwards, then the more expressive "sub-pipeline" is generally what you want to "filter" the results of the foreign collection before anything gets returned into the array at all.
Back to the answer though which actually describes why the question asked needs "no join" at all....
Original
Using $lookup like this is not the most "efficient" way to do what you want here. But more on this later.
As a basic concept, just use $filter on the resulting array:
db.test.aggregate([
{ "$match": { "id": 100 } },
{ "$lookup": {
"from": "test",
"localField": "id",
"foreignField": "contain",
"as": "childs"
}},
{ "$project": {
"id": 1,
"value": 1,
"contain": 1,
"childs": {
"$filter": {
"input": "$childs",
"as": "child",
"cond": { "$eq": [ "$$child.value", "1" ] }
}
}
}}
]);
Or use $redact instead:
db.test.aggregate([
{ "$match": { "id": 100 } },
{ "$lookup": {
"from": "test",
"localField": "id",
"foreignField": "contain",
"as": "childs"
}},
{ "$redact": {
"$cond": {
"if": {
"$or": [
{ "$eq": [ "$value", "0" ] },
{ "$eq": [ "$value", "1" ] }
]
},
"then": "$$DESCEND",
"else": "$$PRUNE"
}
}}
]);
Both get the same result:
{
"_id":ObjectId("570557d4094a4514fc1291d6"),
"id":100,
"value":"0",
"contain":[ ],
"childs":[ {
"_id":ObjectId("570557d4094a4514fc1291d7"),
"id":110,
"value":"1",
"contain":[ 100 ]
},
{
"_id":ObjectId("570557d4094a4514fc1291d8"),
"id":120,
"value":"1",
"contain":[ 100 ]
}
]
}
Bottom line is that $lookup itself cannot "yet" query to only select certain data. So all "filtering" needs to happen after the $lookup
But really for this type of "self join" you are better off not using $lookup at all and avoiding the overhead of an additional read and "hash-merge" entirely. Just fetch the related items and $group instead:
db.test.aggregate([
{ "$match": {
"$or": [
{ "id": 100 },
{ "contain.0": 100, "value": "1" }
]
}},
{ "$group": {
"_id": {
"$cond": {
"if": { "$eq": [ "$value", "0" ] },
"then": "$id",
"else": { "$arrayElemAt": [ "$contain", 0 ] }
}
},
"value": { "$first": { "$literal": "0"} },
"childs": {
"$push": {
"$cond": {
"if": { "$ne": [ "$value", "0" ] },
"then": "$$ROOT",
"else": null
}
}
}
}},
{ "$project": {
"value": 1,
"childs": {
"$filter": {
"input": "$childs",
"as": "child",
"cond": { "$ne": [ "$$child", null ] }
}
}
}}
])
Which only comes out a little different because I deliberately removed the extraneous fields. Add them in yourself if you really want to:
{
"_id" : 100,
"value" : "0",
"childs" : [
{
"_id" : ObjectId("570557d4094a4514fc1291d7"),
"id" : 110,
"value" : "1",
"contain" : [ 100 ]
},
{
"_id" : ObjectId("570557d4094a4514fc1291d8"),
"id" : 120,
"value" : "1",
"contain" : [ 100 ]
}
]
}
So the only real issue here is "filtering" any null result from the array, created when the current document was the parent in processing items to $push.
What you also seem to be missing here is that the result you are looking for does not need aggregation or "sub-queries" at all. The structure that you have concluded or possibly found elsewhere is "designed" so that you can get a "node" and all of it's "children" in a single query request.
That means just the "query" is all that is really needed, and the data collection ( which is all that is happening since no content is really being "reduced" ) is just a function of iterating the cursor result:
var result = {};
db.test.find({
"$or": [
{ "id": 100 },
{ "contain.0": 100, "value": "1" }
]
}).sort({ "contain.0": 1 }).forEach(function(doc) {
if ( doc.id == 100 ) {
result = doc;
result.childs = []
} else {
result.childs.push(doc)
}
})
printjson(result);
This does exactly the same thing:
{
"_id" : ObjectId("570557d4094a4514fc1291d6"),
"id" : 100,
"value" : "0",
"contain" : [ ],
"childs" : [
{
"_id" : ObjectId("570557d4094a4514fc1291d7"),
"id" : 110,
"value" : "1",
"contain" : [
100
]
},
{
"_id" : ObjectId("570557d4094a4514fc1291d8"),
"id" : 120,
"value" : "1",
"contain" : [
100
]
}
]
}
And serves as proof that all you really need to do here is issue the "single" query to select both the parent and children. The returned data is just the same, and all you are doing on either server or client is "massaging" into another collected format.
This is one of those cases where you can get "caught up" in thinking of how you did things in a "relational" database, and not realize that since the way the data is stored has "changed", you no longer need to use the same approach.
That is exactly what the point of the documentation example "Model Tree Structures with Child References" in it's structure, where it makes it easy to select parents and children within one query.

Group zipcodes into new categories if it contains value in array

Trying to build an aggregate query that would allow me to categorize zipcodes and return the count for each group.
The docuement looks in part like
{
"_id" : ObjectId("value"),
"updatedAt" : ISODate("value"),
"zip" : "11209",
"state" : "NY",
"city" : "New York",
}
I would like to group by comparing the "zip" field to an array with n number of mutually exclusive values
east_ny_zipcodes = [11209, 11210, 11211, ...]
lower_ny_zipcodes = [11212, 11213, 11214, ...]
ideally returning something like
{
lower_ny: 1200,
upper_ny: 1500,
east_ny: 2000
}
With MongoDB since 3.4 you can use $in to get a comparison to an array:
db.zips.aggregate([
{ "$group": {
"_id": null,
"lower_ny": {
"$sum": {
"$cond": [{ "$in": [ "$zip", lower_ny_zipcodes ] },1,0]
}
},
"east_ny": {
"$sum": {
"$cond": [{ "$in": [ "$zip", east_ny_zipcodes ] },1,0]
}
},
"upper_ny": {
"$sum": {
"$cond": [{ "$in": [ "$zip", upper_ny_zipcodes ] },1,0]
}
}
}}
])
If you don't have that then there is $setIsSubset since MongoDB 2.6. A little different in syntax and intent. But your lists are "unique" so it's not a problem:
db.zips.aggregate([
{ "$group": {
"_id": null,
"lower_ny": {
"$sum": {
"$cond": [{ "$setIsSubset": [ ["$zip"], lower_ny_zipcodes ] },1,0]
}
},
"east_ny": {
"$sum": {
"$cond": [{ "$setIsSubset": [ ["$zip"], east_ny_zipcodes ] },1,0]
}
},
"upper_ny": {
"$sum": {
"$cond": [{ "$setIsSubset": [ ["$zip"], upper_ny_zipcodes ] },1,0]
}
}
}}
])
In essence it's just a logical comparison to your externally defined array content, which gets expanded in the BSON content sent as the operation.
Of course your values in the array must also be "strings" in order to match. But that's easy done if you have not already:
east_ny_zipcodes = [11209, 11210, 11211, ...].map( n => n.toString() );

Difference between two value in embedded document

This is my collection:
{
"Id" : "001",
"Data":[{
"updatedTime" : 1483209005,
"value" : 35
},
{
"updatedTime" : 1483209005,
"value" : 20
}
]
}
This was i tried:
db.A.aggregate([
{ "$group": {
"_id": "$Id",
"Difference": {
"$sum": {
"$cond": [
{ "$eq": [ "Data.$.value", 35.0 ] },
"$updatedTime",
{ "$cond": [
{ "$eq": [ "Data.$.value", 20.0 ] },
{ "$subtract": [ 0, "$updatedTime" ] },
0
]}
]
}
}
}}
])
But i get output like this:
{
"_id" : "001",
"Difference" : 0.0
}
I need to find difference bewteen two updatedDate fields in data array how to i do that?
You need to assign each element in your array to a variable using the $let operator in order to access the subdocument field with "dot notation" can use the $subtract and $abs. To get the first and second element, simply use the $arrayElemAt operator.
In the "in" expression you need to $subtract the two values and return the absolute value using the $abs operator.
db.collection.aggregate([
{ "$group": {
"_id": "$Id",
"Difference": {
"$sum": {
"$let": {
"vars": {
"first": { "$arrayElemAt": [ "$Data", 0 ] },
"second": { "$arrayElemAt": [ "$Data", 1 ] }
},
"in": {
"$abs": {
"$subtract": [
"$$first.updatedTime",
"$$second.updatedTime"
]
}
}
}
}
}
}}
])
As you said it will always have two elements, then do something like this --
db.getCollection('test').aggregate([{$project: {diff: {$abs: {$subtract: [{$arrayElemAt: ['$Data.value', 0]}, {$arrayElemAt: ['$Data.value', 1]}]}}}}])

Return Sub-document only when matched but keep empty arrays

I have a collection set with documents like :
{
"_id": ObjectId("57065ee93f0762541749574e"),
"name": "myName",
"results" : [
{
"_id" : ObjectId("570e3e43628ba58c1735009b"),
"color" : "GREEN",
"week" : 17,
"year" : 2016
},
{
"_id" : ObjectId("570e3e43628ba58c1735009d"),
"color" : "RED",
"week" : 19,
"year" : 2016
}
]
}
I am trying to build a query witch alow me to return all documents of my collection but only select the field 'results' with subdocuments if week > X and year > Y.
I can select the documents where week > X and year > Y with the aggregate function and a $match but I miss documents with no match.
So far, here is my function :
query = ModelUser.aggregate(
{$unwind:{path:'$results', preserveNullAndEmptyArrays:true}},
{$match:{
$or: [
{$and:[
{'results.week':{$gte:parseInt(week)}},
{'results.year':{$eq:parseInt(year)}}
]},
{'results.year':{$gt:parseInt(year)}},
{'results.week':{$exists: false}}
{$group:{
_id: {
_id:'$_id',
name: '$name'
},
results: {$push:{
_id:'$results._id',
color: '$results.color',
numSemaine: '$results.numSemaine',
year: '$results.year'
}}
}},
{$project: {
_id: '$_id._id',
name: '$_id.name',
results: '$results'
);
The only thing I miss is : I have to get all 'name' even if there is no result to display.
Any idea how to do this without 2 queries ?
It looks like you actually have MongoDB 3.2, so use $filter on the array. This will just return an "empty" array [] where the conditions supplied did not match anything:
db.collection.aggregate([
{ "$project": {
"name": 1,
"user": 1,
"results": {
"$filter": {
"input": "$results",
"as": "result",
"cond": {
"$and": [
{ "$eq": [ "$$result.year", year ] },
{ "$or": [
{ "$gt": [ "$$result.week", week ] },
{ "$not": { "$ifNull": [ "$$result.week", false ] } }
]}
]
}
}
}
}}
])
Where the $ifNull test in place of $exists as a logical form can actually "compact" the condition since it returns an alternate value where the property is not present, to:
db.collection.aggregate([
{ "$project": {
"name": 1,
"user": 1,
"results": {
"$filter": {
"input": "$results",
"as": "result",
"cond": {
"$and": [
{ "$eq": [ "$$result.year", year ] },
{ "$gt": [
{ "$ifNull": [ "$$result.week", week+1 ] },
week
]}
]
}
}
}
}}
])
In MongoDB 2.6 releases, you can probably get away with using $redact and $$DESCEND, but of course need to fake the match in the top level document. This has similar usage of the $ifNull operator:
db.collection.aggregate([
{ "$redact": {
"$cond": {
"if": {
"$and": [
{ "$eq": [{ "$ifNull": [ "$year", year ] }, year ] },
{ "$gt": [
{ "$ifNull": [ "$week", week+1 ] }
week
]}
]
},
"then": "$$DESCEND",
"else": "$$PRUNE"
}
}}
])
If you actually have MongoDB 2.4, then you are probably better off filtering the array content in client code instead. Every language has methods for filtering array content, but as a JavaScript example reproducible in the shell:
db.collection.find().forEach(function(doc) {
doc.results = doc.results.filter(function(result) {
return (
result.year == year &&
( result.hasOwnProperty('week') ? result.week > week : true )
)
]);
printjson(doc);
})
The reason being is that prior to MongoDB 2.6 you need to use $unwind and $group, and various stages in-between. This is a "very costly" operation on the server, considering that all you want to do is remove items from the arrays of documents and not actually "aggregate" from items within the array.
MongoDB releases have gone to great lengths to provide array processing that does not use $unwind, since it's usage for that purpose alone is not a performant option. It should only ever be used in the case where you are removing a "significant" amount of data from arrays as a result.
The whole point is that otherwise the "cost" of the aggregation operation is likely greater than the "cost" of transferring the data over the network to be filtered on the client instead. Use with caution:
db.collection.aggregate([
// Create an array if one does not exist or is already empty
{ "$project": {
"name": 1,
"user": 1,
"results": {
"$cond": [
{ "$ifNull": [ "$results.0", false ] },
"$results",
[false]
]
}
}},
// Unwind the array
{ "$unwind": "$results" },
// Conditionally $push based on match expression and conditionally count
{ "$group": {
"_id": "_id",
"name": { "$first": "$name" },
"user": { "$first": "$user" },
"results": {
"$push": {
"$cond": [
{ "$or": [
{ "$not": "$results" },
{ "$and": [
{ "$eq": [ "$results.year", year ] },
{ "$gt": [
{ "$ifNull": [ "$results.week", week+1 ] },
week
]}
]}
] },
"$results",
false
]
}
},
"count": {
"$sum": {
"$cond": [
{ "$and": [
{ "$eq": [ "$results.year", year ] },
{ "$gt": [
{ "$ifNull": [ "$results.week", week+1 ] },
week
]}
] }
1,
0
]
}
}
}},
// $unwind again
{ "$unwind": "$results" }
// Filter out false items unless count is 0
{ "$match": {
"$or": [
"$results",
{ "count": 0 }
]
}},
// Group again
{ "$group": {
"_id": "_id",
"name": { "$first": "$name" },
"user": { "$first": "$user" },
"results": { "$push": "$results" }
}},
// Now swap [false] for []
{ "$project": {
"name": 1,
"user": 1,
"results": {
"$cond": [
{ "$ne": [ "$results", [false] ] },
"$results",
[]
]
}
}}
])
Now that is a lot of operations and shuffling just to "filter" content from an array compared to all of the other approaches which are really quite simple. And aside from the complexity, it really does "cost" a lot more to execute on the server.
So if your server version actually supports the newer operators that can do this optimally, then it's okay to do so. But if you are stuck with that last process, then you probably should not be doing it and instead do your array filtering in the client.

How to find document and single subdocument matching given criterias in MongoDB collection

I have collection of products. Each product contains array of items.
> db.products.find().pretty()
{
"_id" : ObjectId("54023e8bcef998273f36041d"),
"shop" : "shop1",
"name" : "product1",
"items" : [
{
"date" : "01.02.2100",
"purchasePrice" : 1,
"sellingPrice" : 10,
"count" : 15
},
{
"date" : "31.08.2014",
"purchasePrice" : 10,
"sellingPrice" : 1,
"count" : 5
}
]
}
So, can you please give me an advice, how I can query MongoDB to retrieve all products with only single item which date is equals to the date I pass to query as parameter.
The result for "31.08.2014" must be:
{
"_id" : ObjectId("54023e8bcef998273f36041d"),
"shop" : "shop1",
"name" : "product1",
"items" : [
{
"date" : "31.08.2014",
"purchasePrice" : 10,
"sellingPrice" : 1,
"count" : 5
}
]
}
What you are looking for is the positional $ operator and "projection". For a single field you need to match the required array element using "dot notation", for more than one field use $elemMatch:
db.products.find(
{ "items.date": "31.08.2014" },
{ "shop": 1, "name":1, "items.$": 1 }
)
Or the $elemMatch for more than one matching field:
db.products.find(
{ "items": {
"$elemMatch": { "date": "31.08.2014", "purchasePrice": 1 }
}},
{ "shop": 1, "name":1, "items.$": 1 }
)
These work for a single array element only though and only one will be returned. If you want more than one array element to be returned from your conditions then you need more advanced handling with the aggregation framework.
db.products.aggregate([
{ "$match": { "items.date": "31.08.2014" } },
{ "$unwind": "$items" },
{ "$match": { "items.date": "31.08.2014" } },
{ "$group": {
"_id": "$_id",
"shop": { "$first": "$shop" },
"name": { "$first": "$name" },
"items": { "$push": "$items" }
}}
])
Or possibly in shorter/faster form since MongoDB 2.6 where your array of items contains unique entries:
db.products.aggregate([
{ "$match": { "items.date": "31.08.2014" } },
{ "$project": {
"shop": 1,
"name": 1,
"items": {
"$setDifference": [
{ "$map": {
"input": "$items",
"as": "el",
"in": {
"$cond": [
{ "$eq": [ "$$el.date", "31.08.2014" ] },
"$$el",
false
]
}
}},
[false]
]
}
}}
])
Or possibly with $redact, but a little contrived:
db.products.aggregate([
{ "$match": { "items.date": "31.08.2014" } },
{ "$redact": {
"$cond": [
{ "$eq": [ { "$ifNull": [ "$date", "31.08.2014" ] }, "31.08.2014" ] },
"$$DESCEND",
"$$PRUNE"
]
}}
])
More modern, you would use $filter:
db.products.aggregate([
{ "$match": { "items.date": "31.08.2014" } },
{ "$addFields": {
"items": {
"input": "$items",
"cond": { "$eq": [ "$$this.date", "31.08.2014" ] }
}
}}
])
And with multiple conditions, the $elemMatch and $and within the $filter:
db.products.aggregate([
{ "$match": {
"$elemMatch": { "date": "31.08.2014", "purchasePrice": 1 }
}},
{ "$addFields": {
"items": {
"input": "$items",
"cond": {
"$and": [
{ "$eq": [ "$$this.date", "31.08.2014" ] },
{ "$eq": [ "$$this.purchasePrice", 1 ] }
]
}
}
}}
])
So it just depends on whether you always expect a single element to match or multiple elements, and then which approach is better. But where possible the .find() method will generally be faster since it lacks the overhead of the other operations, which in those last to forms does not lag that far behind at all.
As a side note, your "dates" are represented as strings which is not a very good idea going forward. Consider changing these to proper Date object types, which will greatly help you in the future.
Based on Neil Lunn's code I work with this solution, it includes automatically all first level keys (but you could also exclude keys if you want):
db.products.find(
{ "items.date": "31.08.2014" },
{ "shop": 1, "name":1, "items.$": 1 }
{ items: { $elemMatch: { date: "31.08.2014" } } },
)
With multiple requirements:
db.products.find(
{ "items": {
"$elemMatch": { "date": "31.08.2014", "purchasePrice": 1 }
}},
{ items: { $elemMatch: { "date": "31.08.2014", "purchasePrice": 1 } } },
)
Mongo supports dot notation for sub-queries.
See: http://docs.mongodb.org/manual/reference/glossary/#term-dot-notation
Depending on your driver, you want something like:
db.products.find({"items.date":"31.08.2014"});
Note that the attribute is in quotes for dot notation, even if usually your driver doesn't require this.