Improve accuracy on convolutional neural network - neural-network

I'm trying to train a convolutional neural network to classify sentences. I take the code from here
The code works fine in one of my datasets. However, on another dataset, its performance is very poor. Two datasets are comparable in terms of volumes and sentence length. For the dataset with the poor performance, I notice the loss function decreases after steps. Here the blue is for training set and the read is for test set.
And here is the accuracy:
As you can see, the loss values on the test set decrease, but the accuracy values are almost the same.
Can you suggest me how to fix it?
Thank you very much.

Can you try with a smaller learning rate?

Try using an exponential decaying learning rate--starts big at first (say 0.1) and then slows down over iterations.

Related

How to deal with the randomness of NN training process?

Consider the training process of deep FF neural network using mini-batch gradient descent. As far as I understand, at each epoch of the training we have different random set of mini-batches. Then iterating over all mini batches and computing the gradients of the NN parameters we will get random gradients at each iteration and, therefore, random directions for the model parameters to minimize the cost function. Let's imagine we fixed the hyperparameters of the training algorithm and started the training process again and again, then we would end up with models, which completely differs from each other, because in those trainings the changes of model parameters were different.
1) Is it always the case when we use such random based training algorithms?
2) If it is so, where is the guaranty that training the NN one more time with the best hyperparameters found during the previous trainings and validations will yield us the best model again?
3) Is it possible to find such hyperparameters, which will always yield the best models?
Neural Network are solving a optimization problem, As long as it is computing a gradient in right direction but can be random, it doesn't hurt its objective to generalize over data. It can stuck in some local optima. But there are many good methods like Adam, RMSProp, momentum based etc, by which it can accomplish its objective.
Another reason, when you say mini-batch, there is at least some sample by which it can generalize over those sample, there can be fluctuation in the error rate, and but at least it can give us a local solution.
Even, at each random sampling, these mini-batch have different-2 sample, which helps in generalize well over the complete distribution.
For hyperparameter selection, you need to do tuning and validate result on unseen data, there is no straight forward method to choose these.

How loss in RNN/LSTM is calculated?

I'm learing how LSTM works by practicing with time series training data(input is a list of features and output is a scalar).
There is a problem that i couldnt understand when calculating loss for RNN/LSTM:
How loss is calculated? Is it calculated at each time i give the nn new input or acummulated through all the given inputs and then be backprop
#seed Answer is correct. However, in LSTM, or any RNN architecture, the loss for each instance, across all time steps, is added up. In other words, you'll have (L0#t0, L1#t1, ... LT#tT) for each sample in your input batch. Add those losses separately for each instance in the batch. Finally average the losses of each input instance to get the average loss for a current batch
For more information please visit: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
The answer does not depend on the neural network model.
It depends on your choice of optimization method.
If you are using batch gradient descent, the loss is averaged over the whole training set. This is often impractical for neural networks, because the training set is too big to fit into RAM, and each optimization step takes a lot of time.
In stochastic gradient descent, the loss is calculated for each new input. The problem with this method is that it is noisy.
In mini-batch gradient descent, the loss is averaged over each new minibatch - a subsample of inputs of some small fixed size. Some variation of this method is typically used in practice.
So, the answer to your question depends on the minibatch size you choose.
(Image is from here)

Backpropagation neural network, too many neurons in layer causing output to be too high

Having neural network with alot of inputs causes my network problems like
Neural network gets stuck and feed forward calculation always gives output as
1.0 because of the output sum being too big and while doing backpropagation, sum of gradients will be too high what causes the
learning speed to be too dramatic.
Neural network is using tanh as an active function in all layers.
Giving alot of thought, I came up with following solutions:
Initalizing smaller random weight values ( WeightRandom / PreviousLayerNeuronCount )
or
After calculation the sum of either outputs or gradients, dividing the sum with the number of 'neurons in previus layer for output sum' and number of 'neurons in next layer for gradient sum' and then passing sum into activation/derivative function.
I don't feel comfortable with solutions I came up with.
Solution 1. does not solve problem entirely. Possibility of gradient or output sum getting to high is still there. Solution 2. seems to solve the problem but I fear that it completely changes network behavior in a way that it might not solve some problems anymore.
What would you suggest me in this situation, keeping in mind that reducing neuron count in layers is not an option?
Thanks in advance!
General things that affect the output backpropagation include weights and biases of early elections, the number of hidden units, the amount of exercise patterns, and long iterations. As an alternative way, the selection of initial weights and biases there are several algorithms that can be used, one of which is an algorithm Nguyen widrow. You can use it to initialize the weights and biases early, I've tried it and gives good results.

How to improve digit recognition prediction in Neural Networks in Matlab?

I've made digit recognition (56x56 digits) using Neural Networks, but I'm getting 89.5% accuracy on test set and 100% on training set. I know that it's possible to get >95% on test set using this training set. Is there any way to improve my training so I can get better predictions? Changing iterations from 300 to 1000 gave me +0.12% accuracy. I'm also file size limited so increasing number of nodes can be impossible, but if that's the case maybe I could cut some pixels/nodes from the input layer.
To train I'm using:
input layer: 3136 nodes
hidden layer: 220 nodes
labels: 36
regularized cost function with lambda=0.1
fmincg to calculate weights (1000 iterations)
As mentioned in the comments, the easiest and most promising way is to switch to a Convolutional Neural Network. But with you current model you can:
Add more layers with less neurons each, which increases learning capacity and should increase accuracy by a bit. Problem is that you might start overfitting. Use regularization to counter this.
Use batch Normalization (BN). While you are already using regularization, BN accelerates training and also does regularization, and is a NN specific algorithm that might work better.
Make an ensemble. Train several NNs on the same dataset, but with a different initialization. This will produce slightly different classifiers and you can combine their output to get a small increase in accuracy.
Cross-entropy loss. You don't mention what loss function you are using, if its not Cross-entropy, then you should start using it. All the high accuracy classifiers use cross-entropy loss.
Switch to backpropagation and Stochastic Gradient Descent. I do not know the effect of using a different optimization algorithm, but backpropagation might outperform the optimization algorithm you are currently using, and you could combine this with other optimizers such as Adagrad or ADAM.
Other small changes that might increase accuracy are changing the activation functions (like ReLU), shuffle training samples after every epoch, and do data augmentation.

ANN different results for same train-test sets

I'm implementing a neural network for a supervised classification task in MATLAB.
I have a training set and a test set to evaluate the results.
The problem is that every time I train the network for the same training set I get very different results (sometimes I get a 95% classification accuracy and sometimes like 60%) for the same test set.
Now I know this is because I get different initial weights and I know that I can use 'seed' to set the same initial weights but the question is what does this say about my data and what is the right way to look at this? How do I define the accuracy I'm getting using my designed ANN? Is there a protocol for this (like running the ANN 50 times and get an average accuracy or something)?
Thanks
Make sure your test set is large enough compared to the training set (e.g. 10% of the overall data) and check it regarding diversity. If your test set only covers very specific cases, this could be a reason. Also make sure you always use the same test set. Alternatively you should google the term cross-validation.
Furthermore, observing good training set accuracy while observing bad test set accuracy is a sign for overfitting. Try to apply regularization like a simple L2 weight decay (simply multiply your weight matrices with e.g. 0.999 after each weight update). Depending on your data, Dropout or L1 regularization could also help (especially if you have a lot of redundancies in your input data). Also try to choose a smaller network topology (fewer layers and/or fewer neurons per layer).
To speed up training, you could also try alternative learning algorithms like RPROP+, RPROP- or RMSProp instead of plain backpropagation.
Looks like your ANN is not converging to the optimal set of weights. Without further details of the ANN model, I cannot pinpoint the problem, but I would try increasing the number of iterations.