Symbolic functions: Input arguments must be 'double' - matlab

I want to calculate the integral of the following function using int in MATLAB. I tried the following way, but it always shows the error Input arguments must be 'double':
syms x
int(exp(x) .* 1000 .* square(1000 .* (x -1)))
or
syms x
int(exp(x) * 1000 * square(1000 * (x -1)), x, -1000, 1000)
or
syms x
int(exp(x) * 1000 * square(1000 * (x -1)), x, -1000.0, 1000.0)
My function definitions are:
function y = step(t)
y = (1 + sign(t))/2;
end
function y = square(t)
y = step(t + 0.5) - step(t - 0.5);
end

You need to declare your functions to be symbolic:
syms square
syms step2
Why step2? Because step is an already defined function of a common toolbox.
MWE
function test
syms x z
syms square
syms step2
z1 = int(exp(x) .* 1000 .* square(1000 .* (x -1)))
z2 = int(exp(x) * 1000 * square(1000 * (x -1)), x, -1000, 1000)
z3 = int(exp(x) * 1000 * square(1000 * (x -1)), x, -1000.0, 1000.0)
end
function y=step2(t)
y = (1 + sign(t))/2;
end
function y = square(t)
y = step2(t + 0.5) - step2(t - 0.5);
end
z1 = 500*exp(x)*(sign(1000*x - 1999/2) - sign(1000*x - 2001/2))
z2 = 1000*exp(1999/2000)*(exp(1/1000) - 1)
z3 = 1000*exp(1999/2000)*(exp(1/1000) - 1)

Related

Why does the Integral() function claim there is a singularity when there obviously isn't?

I am attempting to write a function which expands another into a Fourier series. However for some functions the integral() function keeps spitting out warnings claiming it has reached minimum step size which is likely due to a singularity at x = -1. My code is as follows:
H = #(t) 1 * (t >= 0) + 0; % Heaviside step function
x_a = #(t) 2*(H(mod(t+1, 4)) - H(mod(t+1, 4) - 2)) - 1;
time = linspace(-8, 8, 25);
plot(time, x_a(time))
ylim([-1.5 1.5])
xlim([-8 8])
% This is where it starts spitting out warnings if the next line is uncommented
%x_a_fourier = fourier(x_a, time, 4, 10);
function x = fourier(F, I, T, m)
a_0 = (1/T) * integral(#(x) F(x), -T/2, T/2);
x = a_0 * ones(1, length(I));
w_0 = (2*pi) / T;
a_n = #(n) (2/T) * integral(#(x) F(x) .* cos(n*w_0*x), -T/2, T/2);
b_n = #(n) (2/T) * integral(#(x) F(x) .* sin(n*w_0*x), -T/2, T/2);
for k = 1:length(I)
for l = 1:m
x(k) = x(k) + a_n(l) * cos(l*w_0*I(k)) + b_n(l) * sin(l*w_0*I(k));
end
end
end
From the plot() statement it should be obvious that the integral() function shouldn't run into any singularities. Any ideas as to what may be the problem?

Code Horner’s Method for Polynomial Evaluation

I am trying to code Horner’s Method for Polynomial Evaluation but for some reason its not working for me and I'm not sure where I am getting it wrong.
These are the data I have:
nodes = [-2, -1, 1]
x = 2
c (coefficients) = [-3, 3, -1]
The code I have so far is:
function y = horner(x, nodes, c)
n = length(c);
y = c(1);
for i = 2:n
y = y * ((x - nodes(i - 1)) + c(i));
end
end
I am supposed to end up with a polynomial such as (−1)·(x+2)(x+1)+3·(x+2)−3·1 and if x =2 then I am supposed to get -3. But for some reason I don't know where I am going wrong.
Edit:
So I changed my code. I think it works but I am not sure:
function y = horner(x, nodes, c)
n = length(c);
y = c(n);
for k = n-1:-1:1
y = c(k) + y * (x - nodes((n - k) + 1));
end
end
This works:
function y = horner(x, nodes, c)
n = length(c);
y = 0;
for i = 1:n % We iterate over `c`
tmp = c(i);
for j = 1:i-1 % We iterate over the relevant elements of `nodes`
tmp *= x - nodes(j); % We multiply `c(i) * (x - nodes(1)) * (x -nodes(2)) * (x- nodes(3)) * ... * (x - nodes(i -1))
end
y += tmp; % We added each product to y
end
% Here `y` is as following:
% c(1) + c(2) * (x - nodes(1)) + c(3) * (x - nodes(1)) * (x - nodes(2)) + ... + c(n) * (x - nodes(1)) * ... * (x - nodes(n - 1))
end
(I'm sorry this isn't python but I don't know python)
In the case where we didn't have nodes, horner's method works like this:
p = c[n]
for i=n-1 .. 1
p = x*p + c[i]
for example for a quadratic (with coeffs a,b,c) this is
p = x*(x*a+b)+c
Note that if your language supports fma
fma(x,y,x) = x*y+z
then horner's method can be written
p = c[n]
for i=n-1 .. 1
p = fma( x, p, c[i])
When you do have nodes, the change is simple:
p = c[n]
for i=n-1 .. 1
p = (x-nodes[i])*p + c[i]
Or, using fma
p = c[n]
for i=n-1 .. 1
p = fma( (x-nodes[i]), p, c[i])
For the quadratic above this leads to
p = (x-nodes[1]*((x-nodes[2])*a+b)+c

How to compute the derivatives automatically within for-loop in Matlab?

For the purpose of generalization, I hope Matlab can automatically compute the 1st & 2nd derivatives of the associated function f(x). (in case I change f(x) = sin(6x) to f(x) = sin(8x))
I know there exists built-in commands called diff() and syms, but I cannot figure out how to deal with them with the index i in the for-loop. This is the key problem I am struggling with.
How do I make changes to the following set of codes? I am using MATLAB R2019b.
n = 10;
h = (2.0 * pi) / (n - 1);
for i = 1 : n
x(i) = 0.0 + (i - 1) * h;
f(i) = sin(6 * x(i));
dfe(i) = 6 * cos(6 * x(i)); % first derivative
ddfe(i) = -36 * sin(6 * x(i)); % second derivative
end
You can simply use subs and double to do that. For your case:
% x is given here
n = 10;
h = (2.0 * pi) / (n - 1);
syms 'y';
g = sin(6 * y);
for i = 1 : n
x(i) = 0.0 + (i - 1) * h;
f(i) = double(subs(g,y,x(i)));
dfe(i) = double(subs(diff(g),y,x(i))); % first derivative
ddfe(i) = double(subs(diff(g,2),y,x(i))); % second derivative
end
By #Daivd comment, you can vectorize the loop as well:
% x is given here
n = 10;
h = (2.0 * pi) / (n - 1);
syms 'y';
g = sin(6 * y);
x = 0.0 + ((1:n) - 1) * h;
f = double(subs(g,y,x));
dfe = double(subs(diff(g),y,x)); % first derivative
ddfe = double(subs(diff(g,2),y,x)); % second derivative

Supplied objective function must return a scalar value

I am trying to code a ML algorithm in Matlab. These are my different functions:
sigmoid.m:
function g = sigmoid(z)
g = zeros(size(z));
g = 1 ./ (1+exp(z));
costFunction.m
function [J, grad ] = costFunction(theta, X, y)
m = length(y); % number of training examples
z = -X * theta;
g = sigmoid(z);
J = 1/m * ((-y * log(g)') - ((1 - y) * log(1 - g)'));
grad = zeros(size(theta'));
grad = (1/m) * (X' * (g - y));
ex2.m (This is the main file of my project and I put the relative lines I get this error message)
options = optimset('GradObj', 'on', 'MaxIter', 400);
[theta, cost] = ...
fminunc(#(t)(costFunction(t, X, y)), initial_theta, options);
The error message:
Error using fminunc (line 348) Supplied objective function must return
a scalar value.
Error in ex2 (line 97) fminunc(#(t)(costFunction(t, X, y)),
initial_theta, options);
I don't know is there enough information above or not? If not, let me know to add extra information.
I changed the following line of code:
J = 1/m * ((-y * log(g)') - ((1 - y) * log(1 - g)'));
To the following line of code:
J = 1/m * (((-y)' * log(g)) - ((1 - y)' * log(1 - g)));
And problem solved!
The y and g were 100*1 matrices and with previous code I had J=100*100 matrix, but with new code I have J=1*1 matrix or scalar number and problem solved!

Matlab error in ode45 or fourth-order Runge-Kutta method to solve a system of coupled ODEs

I am a beginner at Matlab programming and with the Runge-Kutta method as well.
I'm trying to solve a system of coupled ODEs using a 4th-order Runge-Kutta method for my project work.
here is my problem...
G = 1.4;
g = 1.4;
k = 0;
z = 0;
b = 0.166667;
syms n;
x2 = symfun(sym('x2(n)'),[n]);
x1 = symfun(sym('x1(n)'),[n]);
x3 = symfun(sym('x3(n)'),[n]);
x4 = symfun(sym('x4(n)'),[n]);
x5 = symfun(sym('x5(n)'),[n]);
k1 = [x2 * x1 *n *(1 - z * x2)*(x1 - n) - 2 * x3 * n *(1 - z * x2) - x4^2 * x2 *(1 - z * x2)- G *x3 *x2 ]./ [( G * x3 - (x1 - n)^2 * x2 *(1 - z * x2)) * n];
k2 = [x2 * (1 - z * x2)*(x1 * x2 * ( x1 - 2 *n)*( x1 - n) + 2* x3 * n + x4^2 * x2 ) ]./ [( G * x3 - (x1 - n)^2 * x2 *(1 - z * x2)) * n * (x1 - n)];
k3 = [x3 * x2 * (2 * n * x1 - n)^2 * ( 1 - z * x2) + G * x1 * (x1 - 2 *n)* (x1 - n) + x4^2 * G]./ [( G * x3 - (x1 - n)^2 * x2 *(1 - z * x2)) * n * (x1 - n)];
k4 = [x4 * ( x1 + n)] ./ [n * (x1- n)];
k5 = - [x5] ./ [n * (x1- n)];
f = #(n,x) [k1; k2; k3; k4; k5];
[n,xa] = ode45(f,[0 1],[1-b 1/b 1-b 0.01 0.02]);
errors are
Error using odearguments (line 93)
#(N,X)[K1;K2;K3;K4;K5] returns a vector of length 1, but the length
of initial conditions vector is 5. The vector returned by
#(N,X)[K1;K2;K3;K4;K5] and the initial conditions vector must have
the same number of elements.
Error in ode45 (line 114)
[neq, tspan, ntspan, next, t0, tfinal, tdir, y0, f0, odeArgs,
odeFcn, ...
Please guide me how can I solve the above problem with fourth-order Runge-Kutta method...
The error stems from using symbolic functions (mixed with a function handle) with a numeric solver.
You need to create numeric functions for ode45 to function properly (I also replaced all of the [ and ] with ( and ) for grouping):
G = 1.4;
g = 1.4;
k = 0;
z = 0;
b = 0.166667;
k1 = #(n,x) (x(2) * x(1)*n *(1 - z * x(2))*(x(1) - n) - 2 * x(3) * n *(1 - z * x(2)) - x(4)^2 * x(2) *(1 - z * x(2))- G *x(3) *x(2)) ./ (( G * x(3) - (x(1) - n)^2 * x(2) *(1 - z * x(2))) * n);
k2 = #(n,x) (x(2) * (1 - z * x(2))*(x(1) * x(2) * ( x(1) - 2 *n)*( x(1) - n) + 2* x(3) * n + x(4)^2 * x(2) )) ./ (( G * x(3) - (x(1) - n)^2 * x(2) *(1 - z * x(2))) * n * (x(1) - n));
k3 = #(n,x) (x(3) * x(2) * (2 * n * x(1) - n)^2 * ( 1 - z * x(2)) + G * x(1) * (x(1) - 2 *n)* (x(1) - n) + x(4)^2 * G)./ (( G * x(3) - (x(1) - n)^2 * x(2) *(1 - z * x(2))) * n * (x(1) - n));
k4 = #(n,x) (x(4) * (x(1) + n)) ./ (n * (x(1)- n));
k5 = #(n,x) - x(5) ./ (n * (x(1)- n));
f = #(n,x) [k1(n,x); k2(n,x); k3(n,x); k4(n,x); k5(n,x)];
[n,xa] = ode45(f,[0 1],[1-b 1/b 1-b 0.01 0.02]);
This runs for my install of Matlab.
However, the output is all NaNs since the function produce Infs; I may have introduced errors by replacing the brackets, but I don't know what the actual equations are so I'm going to leave that to you. :)
In general, you consult first the documentation. If not available, use the search engine of you choice, for instance https://www.google.de/search?q=matlab+ode45+example to find as first result https://de.mathworks.com/help/matlab/ref/ode45.html
There you find a multidimensional example
function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);
end
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(#rigid,[0 12],[0 1 1],options);
plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')
that could be used as a blueprint. In the related page https://de.mathworks.com/help/matlab/math/ordinary-differential-equations.html they use a different syntax closer to yours for the van der Pol Equation in the first example
function dydt = vdp1(t,y)
dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];
end
[t,y] = ode45(#vdp1,[0 20],[2; 0]);
plot(t,y(:,1),'-',t,y(:,2),'--')
title('Solution of van der Pol Equation, \mu = 1');
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2')
Following these examples, rewrite your code as
G = 1.4;
g = 1.4;
k = 0;
z = 0;
b = 0.166667;
function dotx = dxdn(n,x)
t1 = n*(x1-n)
t2 = x(2)*(1 - z * x(2))
den123 = ( G * x(3) - (x(1) - n)^2 * t2)
k1 = ( x(1)*t1*t2 - 2 * x(3) * n *(1 - z * x(2)) - x(4)^2 * t2- G *x(3) *x(2) ) / (den123*n);
k2 = ( t2*(x(1) * x(2) * ( x(1) - 2 *n)*( x(1) - n) + 2* x(3) * n + x(4)^2 * x(2) ) ) / (den123 * t1);
k3 = ( x(3) * (2 * n * x(1) - n)^2 * t2 + G * x(1) * (x(1) - 2 *n)* (x(1) - n) + x(4)^2 * G ) / (den123*t1);
k4 = ( x(4) * ( x(1) + n) ) / t1;
k5 = - x(5) / t1;
dotx = [k1; k2; k3; k4; k5];
end
[n,xa] = ode45(#dxdn,[0.001 1],[1-b; 1/b; 1-b; 0.01; 0.02]);
Because of the division by zero at n=0 you can not start the iteration in that singularity. In the code above, this is mitigated by starting with some (very) small positive n, you can also try starting with n=1e-8 or smaller. The slope will be very large in all components, so the integration may be slow, and the result might be not overly exact close to zero. For the correct handling of singular ODE ask in the math.stackexchange forum.