I am trying to plot a geodesic on a 3D surface (tractrix) with Matlab. This worked for me in the past when I didn't need to parametrize the surface (see here). However, the tractrix called for parameterization, chain rule differentiation, and collection of u,v,x,y and f(x,y) values.
After many mistakes I think that I'm getting the right values for x = f1(u,v) and y = f2(u,v) describing a spiral right at the base of the surface:
What I can't understand is why the z value or height of the 3D plot of the curve is consistently zero, when I'm applying the same mathematical formula that allowed me to plot the surface in the first place, ie. f = #(x,y) a.* (y - tanh(y)) .
Here is the code, which runs without any errors on Octave. I'm typing a special note in upper case on the crucial calls. Also note that I have restricted the number of geodesic lines to 1 to decrease the execution time.
a = 0.3;
u = 0:0.1:(2 * pi);
v = 0:0.1:5;
[X,Y] = meshgrid(u,v);
% NOTE THAT THESE FORMULAS RESULT IN A SUCCESSFUL PLOT OF THE SURFACE:
x = a.* cos(X) ./ cosh(Y);
y = a.* sin(X) ./ cosh(Y);
z = a.* (Y - tanh(Y));
h = surf(x,y,z);
zlim([0, 1.2]);
set(h,'edgecolor','none')
colormap summer
hold on
% THESE ARE THE GENERIC FUNCTIONS (f) WHICH DON'T SEEM TO WORK AT THE END:
f = #(x,y) a.* (y - tanh(y));
f1 = #(u,v) a.* cos(u) ./ cosh(v);
f2 = #(u,v) a.* sin(u) ./ cosh(v);
dfdu = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u+eps,v)-f1(u-eps,v))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u+eps,v)-f2(u-eps,v))/(2*eps));
dfdv = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u,v+eps)-f1(u,v-eps))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u,v+eps)-f2(u,v-eps))/(2*eps));
% Normal vector to the surface:
N = #(u,v) [- dfdu(u,v), - dfdv(u,v), 1]; % Normal vec to surface # any pt.
% Some colors to draw the lines:
C = {'k','r','g','y','m','c'};
for s = 1:1 % No. of lines to be plotted.
% Starting points:
u0 = [0, u(length(u))];
v0 = [0, v(length(v))];
du0 = 0.001;
dv0 = 0.001;
step_size = 0.00005; % Will determine the progression rate from pt to pt.
eta = step_size / sqrt(du0^2 + dv0^2); % Normalization.
eps = 0.0001; % Epsilon
max_num_iter = 100000; % Number of dots in each line.
% Semi-empty vectors to collect results:
U = [[u0(s), u0(s) + eta*du0], zeros(1,max_num_iter - 2)];
V = [[v0(s), v0(s) + eta*dv0], zeros(1,max_num_iter - 2)];
for i = 2:(max_num_iter - 1) % Creating the geodesic:
ut = U(i);
vt = V(i);
xt = f1(ut,vt);
yt = f2(ut,vt);
ft = f(xt,yt);
utm1 = U(i - 1);
vtm1 = V(i - 1);
xtm1 = f1(utm1,vtm1);
ytm1 = f2(utm1,vtm1);
ftm1 = f(xtm1,ytm1);
usymp = ut + (ut - utm1);
vsymp = vt + (vt - vtm1);
xsymp = f1(usymp,vsymp);
ysymp = f2(usymp,vsymp);
fsymp = ft + (ft - ftm1);
df = fsymp - f(xsymp,ysymp); % Is the surface changing? How much?
n = N(ut,vt); % Normal vector at point t
gamma = df * n(3); % Scalar x change f x z value of N
xtp1 = xsymp - gamma * n(1); % Gamma to modulate incre. x & y.
ytp1 = ysymp - gamma * n(2);
U(i + 1) = usymp - gamma * n(1);;
V(i + 1) = vsymp - gamma * n(2);;
end
% THE PROBLEM! f(f1(U,V),f2(U,V)) below YIELDS ALL ZEROS!!! The expected values are between 0 and 1.2.
P = [f1(U,V); f2(U,V); f(f1(U,V),f2(U,V))]; % Compiling results into a matrix.
units = 35; % Determines speed (smaller, faster)
packet = floor(size(P,2)/units);
P = P(:,1: packet * units);
for k = 1:packet:(packet * units)
hold on
plot3(P(1, k:(k+packet-1)), P(2,(k:(k+packet-1))), P(3,(k:(k+packet-1))),
'.', 'MarkerSize', 5,'color',C{s})
drawnow
end
end
The answer is to Cris Luengo's credit, who noticed that the upper-case assigned to the variable Y, used for the calculation of the height of the curve z, was indeed in the parametrization space u,v as intended, and not in the manifold x,y! I don't use Matlab/Octave other than for occasional simulations, and I was trying every other syntactical permutation I could think of without realizing that f fed directly from v (as intended). I changed now the names of the different variables to make it cleaner.
Here is the revised code:
a = 0.3;
u = 0:0.1:(3 * pi);
v = 0:0.1:5;
[U,V] = meshgrid(u,v);
x = a.* cos(U) ./ cosh(V);
y = a.* sin(U) ./ cosh(V);
z = a.* (V - tanh(V));
h = surf(x,y,z);
zlim([0, 1.2]);
set(h,'edgecolor','none')
colormap summer
hold on
f = #(x,y) a.* (y - tanh(y));
f1 = #(u,v) a.* cos(u) ./ cosh(v);
f2 = #(u,v) a.* sin(u) ./ cosh(v);
dfdu = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u+eps,v)-f1(u-eps,v))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u+eps,v)-f2(u-eps,v))/(2*eps));
dfdv = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u,v+eps)-f1(u,v-eps))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u,v+eps)-f2(u,v-eps))/(2*eps));
% Normal vector to the surface:
N = #(u,v) [- dfdu(u,v), - dfdv(u,v), 1]; % Normal vec to surface # any pt.
% Some colors to draw the lines:
C = {'y','r','k','m','w',[0.8 0.8 1]}; % Color scheme
for s = 1:6 % No. of lines to be plotted.
% Starting points:
u0 = [0, -pi/2, 2*pi, 4*pi/3, pi/4, pi];
v0 = [0, 0, 0, 0, 0, 0];
du0 = [0, -0.0001, 0.001, - 0.001, 0.001, -0.01];
dv0 = [0.1, 0.01, 0.001, 0.001, 0.0005, 0.01];
step_size = 0.00005; % Will determine the progression rate from pt to pt.
eta = step_size / sqrt(du0(s)^2 + dv0(s)^2); % Normalization.
eps = 0.0001; % Epsilon
max_num_iter = 180000; % Number of dots in each line.
% Semi-empty vectors to collect results:
Uc = [[u0(s), u0(s) + eta*du0(s)], zeros(1,max_num_iter - 2)];
Vc = [[v0(s), v0(s) + eta*dv0(s)], zeros(1,max_num_iter - 2)];
for i = 2:(max_num_iter - 1) % Creating the geodesic:
ut = Uc(i);
vt = Vc(i);
xt = f1(ut,vt);
yt = f2(ut,vt);
ft = f(xt,yt);
utm1 = Uc(i - 1);
vtm1 = Vc(i - 1);
xtm1 = f1(utm1,vtm1);
ytm1 = f2(utm1,vtm1);
ftm1 = f(xtm1,ytm1);
usymp = ut + (ut - utm1);
vsymp = vt + (vt - vtm1);
xsymp = f1(usymp,vsymp);
ysymp = f2(usymp,vsymp);
fsymp = ft + (ft - ftm1);
df = fsymp - f(xsymp,ysymp); % Is the surface changing? How much?
n = N(ut,vt); % Normal vector at point t
gamma = df * n(3); % Scalar x change f x z value of N
xtp1 = xsymp - gamma * n(1); % Gamma to modulate incre. x & y.
ytp1 = ysymp - gamma * n(2);
Uc(i + 1) = usymp - gamma * n(1);;
Vc(i + 1) = vsymp - gamma * n(2);;
end
x = f1(Uc,Vc);
y = f2(Uc,Vc);
P = [x; y; f(Uc,Vc)]; % Compiling results into a matrix.
units = 35; % Determines speed (smaller, faster)
packet = floor(size(P,2)/units);
P = P(:,1: packet * units);
for k = 1:packet:(packet * units)
hold on
plot3(P(1, k:(k+packet-1)), P(2,(k:(k+packet-1))), P(3,(k:(k+packet-1))),
'.', 'MarkerSize', 5,'color',C{s})
drawnow
end
end
I am trying to code Horner’s Method for Polynomial Evaluation but for some reason its not working for me and I'm not sure where I am getting it wrong.
These are the data I have:
nodes = [-2, -1, 1]
x = 2
c (coefficients) = [-3, 3, -1]
The code I have so far is:
function y = horner(x, nodes, c)
n = length(c);
y = c(1);
for i = 2:n
y = y * ((x - nodes(i - 1)) + c(i));
end
end
I am supposed to end up with a polynomial such as (−1)·(x+2)(x+1)+3·(x+2)−3·1 and if x =2 then I am supposed to get -3. But for some reason I don't know where I am going wrong.
Edit:
So I changed my code. I think it works but I am not sure:
function y = horner(x, nodes, c)
n = length(c);
y = c(n);
for k = n-1:-1:1
y = c(k) + y * (x - nodes((n - k) + 1));
end
end
This works:
function y = horner(x, nodes, c)
n = length(c);
y = 0;
for i = 1:n % We iterate over `c`
tmp = c(i);
for j = 1:i-1 % We iterate over the relevant elements of `nodes`
tmp *= x - nodes(j); % We multiply `c(i) * (x - nodes(1)) * (x -nodes(2)) * (x- nodes(3)) * ... * (x - nodes(i -1))
end
y += tmp; % We added each product to y
end
% Here `y` is as following:
% c(1) + c(2) * (x - nodes(1)) + c(3) * (x - nodes(1)) * (x - nodes(2)) + ... + c(n) * (x - nodes(1)) * ... * (x - nodes(n - 1))
end
(I'm sorry this isn't python but I don't know python)
In the case where we didn't have nodes, horner's method works like this:
p = c[n]
for i=n-1 .. 1
p = x*p + c[i]
for example for a quadratic (with coeffs a,b,c) this is
p = x*(x*a+b)+c
Note that if your language supports fma
fma(x,y,x) = x*y+z
then horner's method can be written
p = c[n]
for i=n-1 .. 1
p = fma( x, p, c[i])
When you do have nodes, the change is simple:
p = c[n]
for i=n-1 .. 1
p = (x-nodes[i])*p + c[i]
Or, using fma
p = c[n]
for i=n-1 .. 1
p = fma( (x-nodes[i]), p, c[i])
For the quadratic above this leads to
p = (x-nodes[1]*((x-nodes[2])*a+b)+c
I am currently implementing 2D DFT and IDFT for images in matlab without using built-in library. I successfully output a spectrum image after DFT but I fail to get back the original image after IDFT.
Here's my code for DFT
input = im2double(img_input);
[M, N] = size(input);
Wm = zeros(M, M);
Wn = zeros(N, N);
for x = 1:M-1
for y = 1:N-1
input(x, y) = input(x, y) * (-1)^(x + y);
end
end
for u = 0:M-1
for x = 0:M-1
Wm(u+1, x+1) = exp(-li * pi * 2 * u * x/ M);
end
end
for v = 0:N-1
for y = 0:N-1
Wn(v+1, y+1) = exp(-li * pi * 2 * v * y / N);
end
end
F = Wm * input * Wn / 200;
output = im2uint8(log(1 + abs(F)));
IDFT:
[M, N] = size(input);
Wm = zeros(M, M);
Wn = zeros(N, N);
for x = 0:M-1
for u = 0:M-1
Wm(x+1, u+1) = exp(2 * pi * 1i * u * x/ M);
end
end
for y = 0:N-1
for v = 0:N-1
Wn(y+1, v+1) = exp(2 * pi * 1i * v * y / N);
end
end
f = Wm * input * Wn;
for x = 1:M-1
for y = 1:N-1
f(x, y) = f(x, y) * (-1)^(x + y);
end
end
output = im2uint8(abs(f));
I multiply the input by (-1)^(x+y) in order to shift the coordinate origin. I have no idea why I can't get back the original image after performing IDFT on the DFTed image.
Original Image
Image after DFT
Image after IDFT
Your code works fine. To get output of the second function to be identical to img_input of the first function, I had to make the following changes:
1st function:
F = Wm * input * Wn; % Don't divide by 200 here.
output = im2uint8(log(1 + abs(F))); % Skip this line altogether
2nd function: Make sure F from the first function is used as input here.
f = Wm * input * Wn / N / M; % Divide by N*M, proper normalization
Note that the normalization is usually put into the IDFT, but you can also put it into the DFT if you prefer. The normalization by 200 is not correct though.