I'm trying to use SparseTensor to represent weight variables in a fully-connected layer.
However, it seems that TensorFlow 0.8 doesn't allow to use SparseTensor as tf.Variable.
Is there any way to go around this?
I've tried
import tensorflow as tf
a = tf.constant(1)
b = tf.SparseTensor([[0,0]],[1],[1,1])
print a.__class__ # shows <class 'tensorflow.python.framework.ops.Tensor'>
print b.__class__ # shows <class 'tensorflow.python.framework.ops.SparseTensor'>
tf.Variable(a) # Variable is declared correctly
tf.Variable(b) # Fail
By the way, my ultimate goal of using SparseTensor is to permanently mask some of connections in dense form. Thus, these pruned connections are ignored while calculating and applying gradients.
In my current implementation of MLP, SparseTensor and its sparse form of matmul ops successfully reports inference outputs. However, the weights declared using SparseTensor aren't trained as training steps go.
As a workaround to your problem, you can provide a tf.Variable (until Tensorflow v0.8) for the values of a sparse tensor. The sparsity structure has to be pre-defined in that case, the weights however remain trainable.
weights = tf.Variable(<initial-value>)
sparse_var = tf.SparseTensor(<indices>, weights, <shape>) # v0.8
sparse_var = tf.SparseTensor(<indices>, tf.identity(weights), <shape>) # v0.9
TensorFlow doesn't currently support sparse tensor variables. However, it does support sparse lookups (tf.embedding_lookup) and sparse gradient updates (tf.sparse_add) of dense variables. I suspect these two will suffice your use case.
TensorFlow doesn't support training on sparse tensors yet. You can initialize a sparse tensor as you wish, then convert it into a dense tensor and create a variable from it like that:
# You need to correctly initialize the sparse tensor with indices, values and a shape
b = tf.SparseTensor(indices, values, shape)
b_dense = tf.sparse_tensor_to_dense(b)
b_variable = tf.Variable(b_dense)
Now you have initialized a sparse tensor as a variable. Now you need to take care of the gradient update (in other words, make sure the entries in the variable stay 0, since there is a non-vanishing gradient calculated in the backpropagation algorithm for them when using this naively).
In order to do this, TensorFlow optimizers have a method called tf.train.Optimizer.compute_gradients(loss, [list_of_variables]). This calculates all the gradients in the graph necessary to minimize the loss function, but doesn't apply them yet. This method returns a list of tuples in a form of (gradients, variable). You can modify these gradients freely, but in your case it makes sense to mask the gradients not needed to 0 (i.e. by creating another sparse tensor with default values 0.0 and values 1.0 where the weights in your network are present).
After having modified them, you call the optimizer method tf.train.Optimizer.apply_gradients(grads_and_vars) to actually apply the gradients. An example code would look like this:
# Create optimizer instance
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
# Get the gradients for your weights
grads_and_vars = optimizer.compute_gradients(loss, [b_variable])
# Modify the gradients at will
# In your case it would look similar to this
modified_grads_and_vars = [(tf.multiply(gv[0], mask_tensor), gv[1] for gv in grads_and_vars]
# Apply modified gradients to your model
optimizer.apply_gradients(modified_grads_and_vars)
This makes sure your entries stay 0 in your weight matrix and no unwanted connections are created. You need to take care of all the other gradients for all other variables later.
The above code works with some minor correction like this.
def optimize(loss, mask_tensor):
optimizer = tf.train.AdamOptimizer(0.001)
grads_and_vars = optimizer.compute_gradients(loss)
modified_grads_and_vars = [
(tf.multiply(gv[0], mask_tensor[gv[1]]), gv[1]) for gv in grads_and_vars
]
return optimizer.apply_gradients(modified_grads_and_vars)
Related
I would like to fix the initial weights for the neural network I created.
Currently, I have initialized the weights as given below.
Is there a way by which can I initialize one set of fixed random weights? so that every time I run the code the initialized array is the same.
def InitializeWeights(nodes):
layers, weights = len(nodes), []
for i in range(1, layers):
w = [[np.random.uniform(-1, 1) #randomise weights
for k in range(nodes[i-1] + 1)]
for j in range(nodes[i])]
weights.append(np.matrix(w))
return weights
You should try setting the seed of the randomness generator in Tensorflow to a fixed, arbitrary value at the beginning of your experiment. This way, running the initialization will generate the same results all the time:
tf.set_random_seed(42)
# Initialize weights the standard way! (just define tf.keras layers or similar)
Optionally (if you're defining layers at a lower level) you could set individual seeds for each weight generation
W = tf.Variable(tf.truncated_normal(((10,10)), stddev=0.1, seed=42))
Huggigface BERT implementation has a hack to remove the pooler from optimizer.
https://github.com/huggingface/transformers/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/run_squad.py#L927
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
We are trying to run pretrining on huggingface bert models. The code always diverges later during the training if this pooler hack is not applied. I also see the pooler layer being used during classification.
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
The pooler layer is a FFN with tanh activation
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
My question is why this pooler hack solves numeric instability?
Problem seen with pooler
There are quite a few resources out there that probably tackle this issue better than me, see for example here, or here.
Specifically, the problem is that you are dealing with vanishing (or exploding) gradients, specifically when using loss functions that flatten in either direction for very small/large inputs, which is the case for both sigmoid and tanh (the only difference here is the range in which their output lies, which is [0, 1] and [-1, 1], respectively.
Additionally, if you have a low-precision decimal, as is the case with APEX, then the gradient vanishing behavior is much more likely to appear already for relatively moderate outputs, as the precision limits the numbers which it is able to differentiate from zero. One way to deal with this is to have functions that have strictly non-zero and easily computable derivatives, such as Leaky ReLU, or simply avoid the activation function altogether (which I'm assuming is what huggingface is doing here).
Note that the problem of exploding gradients is usually not as tragic, as we can apply gradient clipping (limiting it to a fixed maximum size), but nonetheless the principle is the same. For zeroed gradients, on the other hand, there is no such easy fix, since it causes your neurons to "die" (no active learning is happening with zero backflow), which is why I'm assuming that you see the diverging behavior.
I am using keras and tensorflow 1.4.
I want to explicitly specify which neurons are connected between two layers. Therefor I have a matrix A with ones in it, whenever neuron i in the first Layer is connected to neuron j in the second Layer and zeros elsewhere.
My first attempt was to create a custom layer with a kernel, that has the same size as A with non-trainable zeros in it, where A has zeros in it and trainable weights, where A has ones in it. Then, the desired output would be a simple dot-product. Unfortunately I did not manage to figure out, how to implement a kernel that is partly trainable and partly non-trainable.
Any suggestions?
(Building a functional model with a lot of neurons that are connected by hand could be a work around, but somehow 'ugly' solution)
The simplest way I can think of, if you have this matrix correctly shaped, is to derive the Dense layer and simply add the matrix in the code multiplying the original weights:
class CustomConnected(Dense):
def __init__(self,units,connections,**kwargs):
#this is matrix A
self.connections = connections
#initalize the original Dense with all the usual arguments
super(CustomConnected,self).__init__(units,**kwargs)
def call(self,inputs):
#change the kernel before calling the original call:
self.kernel = self.kernel * self.connections
#call the original calculations:
super(CustomConnected,self).call(inputs)
Using:
model.add(CustomConnected(units,matrixA))
model.add(CustomConnected(hidden_dim2, matrixB,activation='tanh')) #can use all the other named parameters...
Notice that all the neurons/units have yet a bias added at the end. The argument use_bias=False will still work if you don't want biases. You can also do exactly the same thing using a vector B, for instance, and mask the original biases with self.biases = self.biases * vectorB
Hint for testing: use different input and output dimensions, so you can be sure that your matrix A has the correct shape.
I just realized that my code is potentially buggy, because I'm changing a property that is used by the original Dense layer. If weird behaviors or messages appear, you can try another call method:
def call(self, inputs):
output = K.dot(inputs, self.kernel * self.connections)
if self.use_bias:
output = K.bias_add(output, self.bias)
if self.activation is not None:
output = self.activation(output)
return output
Where K comes from import keras.backend as K.
You may also go further and set a custom get_weights() method if you want to see the weights masked with your matrix. (This would not be necessary in the first approach above)
I want to create a custom loss function for a double-input double-output model in Keras that:
minimizes the reconstruction error of two autoencoders;
maximizes the correlation of the bottleneck features of the autoencoders.
For this I need to pass to the loss function:
both inputs;
both outputs / reconstructions;
output of intermediate layers for both (hidden activations).
I know I can pass both inputs and outputs to Model, but am struggling to find a way to pass the hidden activations.
I could create two new Models that have the output of the intermediate layers and pass that to loss, like:
intermediate_layer_model1 = Model(input=input1, output=autoencoder.get_layer('encoded1').output)
intermediate_layer_model2 = Model(input=input2, output=autoencoder.get_layer('encoded2').output)
autoencoder.compile(optimizer='adadelta', loss=loss(intermediate_layer_model1, intermediate_layer_model2))
But still, I would need to find a way to match the y_true in loss to the correct intermediate model.
What is the right way to approach this?
Edit
Here's an approach that I think should work. Simplified:
# autoencoder 1
input1 = Input(shape=(input_dim,))
encoded1 = Dense(encoding_dim, activation='relu', name='encoded1')(input1)
decoded1 = Dense(input_dim, activation='sigmoid', name='decoded1')(encoded1)
# autoencoder 2
input2 = Input(shape=(input_dim,))
encoded2 = Dense(encoding_dim, activation='relu', name='encoded2')(input2)
decoded2 = Dense(input_dim, activation='sigmoid', name='decoded2')(encoded2)
# merge encodings
merge_layer = merge([encoded1, encoded2], mode='concat', name='merge', concat_axis=1)
model = Model(input=[input1, input2], output=[decoded1, decoded2, merge_layer])
model.compile(optimizer='rmsprop', loss={
'decoded1': 'binary_crossentropy',
'decoded2': 'binary_crossentropy',
'merge': correlation,
})
Then in correlation I can split y_pred and do the calculations.
How about:
Defining a single model with a multiple outputs (be sure that you named a coding and reconstruction layer properly):
duo_model = Model(input=input, output=[coding_layer, reconstruction_layer])
Compiling your model with two different losses (or even performing a loss reweighting):
duo_model.compile(optimizer='rmsprop',
loss={'coding_layer': correlation_loss,
'reconstruction_layer': 'mse'})
Taking your final model as a:
encoder = Model(input=input, output=[coding_layer])
autoencoder = Model(input=input, output=[reconstruction_layer])
After proper compilation this should do the job.
When it comes to defining a proper correlation loss function there are two ways:
when coding layer and your output layer have the same dimension -
you could easly use predefinied cosine_proximity function from
Keras library.
when coding layer has different dimensonality -
you shoud first find embedding of coding vector and reconstruction vector to the same space and then - compute correlation there. Remember that this embedding should either be a Keras layer / function or Theano / Tensor flow operation (depending on which backend you are using). Of course you can compute both embedding and correlation function as a part of one loss function.
In theano, given a batch cost cost with shape (batch_size,), it is easy to compute the gradient of the mean cost, as in T.grad(T.mean(cost,axis=0),p) with p being a parameter used in the computation of cost. This is done efficiently by backpropagating the gradient through the computational graph. What I would now like to do is to compute the mean of the squared gradients over the batch. This can be done using the following piece of code:
import theano.tensor as T
g_square = T.mean(theano.scan(lambda i:T.grad(cost[i],p)**2,sequences=T.arange(cost.shape[0]))[0],axis=0)
Where for convenience p is assumed to be a single theano tensor and not a list of tensors.
The computation could be performed efficiently by simply backpropagating the gradient until the last step, and squaring the components of the last operation (which should be a sum over the batch index). I might be wrong on this one, but the computation should be as easy, and nearly as fast as a simple backpropagation. However, theano seems unable to optimize the computation, and it keeps using a loop, making computations extremely slow.
Would anyone know of a solution to make the computation efficient, either by forcing optimizations, expressing the computation in a different way, or even going through the backpropagation process ?
Thanks in advance.
Your function g_square happens to have complexity O(batch_size**2) instead of O(batch_size) as expected. This lets it appear incredibly slow for larger batch sizes.
The reason is because in every iteration the forward and backward pass is computed over the whole batch, even though just cost[i] for one data point is needed.
I assume the input to the cost computation graph, x, is a tensor with the first dimension of size batch_size. Theano has no means to automatically slice this tensor along this dimension. Therefore computation is always done over the whole batch.
Unfortunately I see no better solution than slicing your input and doing the loop outside Theano:
# x: input data batch
batch_size = x.shape[0]
g_square_fun = theano.function( [p], T.grad(cost[0],p)**2)
g_square_value = 0
for i in batch_size:
g_square_value += g_square_fun( x[i:i+1])
Perhaps when future versions of Theano come with better build in capabilities to compute Jacobians there will be more elegant solutions.
After digging deeper in the Theano docs I found a solution that would work in the compute graph. Key idea is that you clone the graph of your network inside the scan function, thereby explicitly slicing the input tensor. I tried the following code and empirically it shows O(batch_size) as expected:
# x: input data batch
# assuming cost = network(x,p)
from theano.gof.graph import clone_get_equiv
def g_square(cost,p):
g = T.zeros_like(p)
def scan_fn( i, g, cost, p):
# clone the graph computing cost, but slice it's input
cloned = clone_get_equiv([],[cost],
copy_inputs_and_orphans=False,
memo={x: x[i:i+1]})
cost_slice = cloned[cost].reshape([])
return g+T.grad(cost_slice,p)**2
result,updates = theano.reduce( scan_fn,
outputs_info=g,
sequences=[T.arange(cost.size)],
non_sequences=[cost.flatten(),p])
return result