We started to use Apache Kafka to persist Timeseries data into a Timeseries database. What we started with was to just have a single topic, a producer writing to this topic and a single consumer reading from this topic and dumping the data to the Timeseries database.
We had 3 broker instances and what we noticed in the first try was that the producer was pretty fast in writing messages to the topic. Within a matter of 30 minutes, we had around 1.5 million messages. The consumer was just doing 300 messages per second.
Our next approach was to partition the topic and have more consumer instances (equal to the number of partitions). This definitely improved on the consumer write speed. Now my questions are:
What happens if I set my topic partition to 6, but I have only 3 broker instances. Which broker instance would be the leader for partition 1 to 6?
Is there a formula to determine how many partitions would I be needing? Since this was our test environment, we could play with it and scale it. We might not be able to do the same on our production environment. So how to determine the partition size?
The partitions get distributed amongst your brokers. It's impossible to know which broker will be elected leader of a given partition -- and it can change over time. Depending on which version of Kafka and which Consumer API you use, your consumer may or may not discover partition leaders on its own. With the SimpleConsumer you have to find partition leaders on your own, and respond to new leader election in your code (instead of having it handled by the API automatically).
As to the number of partitions -- there's no real "formula" other than this: you can have no more parallelism than you have partitions. If you have 4 partitions and 5 consumers, one of the consumers will starve. I usually use numbers like 12 or 60 or multiples thereof for the number of partitions for large topics. Something that divides easily and cleanly among variable numbers of consumers.
Also, note that you can later on change the number of partitions, with some caveats. See this answer for how and what the caveats are.
Related
I'm relatively new to working with Kafka, below is a sample of what my current set up is.
Kafka Setup
Multiple topics that all have one partition each. 2 Consumer Groups with each group containing one consumer.
The issue I am seeing is that the Lag is enormous, sometimes upwards of 8-10 hours waiting for consuming, the load is about 100-200 million messages a day
What steps should I look at in order to address this? Is it as simple as reassigning partitions or creating new partitions for the 3 topics that are being consumed by the two consumers? - I've also looked at compressing the contents of the producer with gzip but it doesn't really help in terms of the lag. I've looked at network connections and don't feel that it is anything got to do with this. If anyone could point me in the direction of Kafka and Low Latency documents that would be good also.
Generally the flow is to parallelize your consumption through the increase on the number of partitions and consumers in consumer groups that subscribe to those topics with increased partitions (Nconsumers <= Npartitions).
And distribute your topics with increase on the number of brokers in your cluster.
So from topic considerations:
Less partition per topic result:
in producer and/or consumer lag
starved or overloaded brokers and consumers.
(But take into account) More partition per topic result in:
More broker resources – file handlers and memory.
There is an overhead with each additional partition and a number of partitions a broker can handle is limited.
Overhead of replication load
Then increase the number of consumers in that consumer groups.
Try increasing partition per topic, but by itself it should not help! You also will need to increase the number of consumers in your consumer group. Is that single consumers or consumer groups on your diagram? How many consumers in your consumer group vs partitions on the topic that they are subscibed to.
From this in your message:
I've also looked at compressing the contents of the producer with gzip but it doesn't really help in terms of the lag.
I get an idead that your messages may be huge! Is it so? In case yes, try to keep messages small (for example by excluding BLOBs and keep external links to them)
Still the issue may be somewhere else like bad configs, consumer commit messages (acknowledgment handling), etc.
So, I highly advice you to read article Fine-tune Kafka performance with the Kafka optimization theorem
I also advise you to go through Apache Kafka courses on Confluent web-page
This should be added as a comment, but I haven't had permissions to do so. The provided info is very limited with incorrect diagram, which limits the ability to provide an adequate helpfull answer. If possible please correct your diagram and add more details about your set-up like:
broker configuration, file attached;
consumer set-up (Consumer commit messages);
producer set-up;
topic set-up;
kafka version (the defaults differ with major/minor versions)
The provided diagram is not correct in the notion of topic - partition relationship, so I assume it is a mistype and Partition 0 must be substituded with Broker 0, right?
Kafka's topics are divided into several partitions. While the topic is a logical concept in Kafka, a partition is the smallest storage unit that holds a subset of records owned by a topic...
Then there is an open question on the number of partiotions in each topic and the number of topics in each broker, as well as the number of brokers in your cluster!
I have a standalone Kafka setup with single disk. planning to stream over million records. How to decide partitions for my topic for better through-put? has to be 1 partition?
Is it recommended to have multiple partitions for a topic on standalone Kafka server?
Yes you need multiple partitions even for a single node kafka cluster. That is because you can only have as many consumers as you have partitions. If you have a single partition then you can only have a single consumer, and that will limit throughput. Especially if you want to stream millions of rows (although the period for those is not specified).
The only real downside to this is that messages are only consumed in order within the same partition. Other than that, you should go with multiple partitions. You will need to estimate the throughput of a single consumer in order to calculate the partitions, then maybe add one or 2 on top of that.
You can still add partitions later but it's probably better to try to start with the right amount first and change later as you learn more or as your volume increases/decreases.
There are two main factors to consider:
Number of producers and consumers
Each client, producer or consumer, can only connect to one partition. For this reason, the number of partitions must be at least the max(number of producers, number of consumers).
Throughput
You must determine the troughput to calculate how many consumers should be in the consumer group. The combined reading capacity of consumers should be at least as high as the combined writing capacity of producers.
I am new to Kafka and think I am missing something on how partition queues get balanced on a topic
We have 5 partitions and 2 consumers on a topic. The topic has a null key so I assume Kafka randomly picks a new partition to add the new record to in a round robin fashion.
This would mean one consumer would be reading from 3 partitions and the other 2. If my assumption is right (that the records get evenly distrusted across partitions) the consumer with 3 partitions would be doing more work (1.5x more). This could lead to one consumer doing nothing while the other keeps working hard.
I think you should have an even divisible number of partitions to consumers.
Am I missing something?
The unit of parallelism in consuming Kafka messages is the partition. The routine scenario for consuming Kafka messages is getting messages using a data stream processing engine like Apache Flink, Spark, and Storm that all of them distributed processing on CPU cores. The rule is the maximum level of parallelism for each consumer group can be the number of partitions. Each consumer instance of a consumer group (say CPU cores) can consume one or more partitions and on the other hand, each partition can be consumed by just one consumer instance of each consumer group.
If you have more CPU core than the number of partitions, some of them
will be idle.
If you have less CPU core than the number of partitions, some of
them will consume more than one partitions.
And the optimized case is when the number of CPU cores and
Kafka partitions are equal.
The image can describe all well:
If my assumption is right (that the records get evenly distributed across partitions) the consumer with 3 partitions would be doing more work (1.5x more). This could lead to one consumer doing nothing while the other keeps working hard.
Why would one consumer do nothing? It would still process records from those 2 partitions [assuming of course, that both the consumers are in same group]
I think you should have an even divisible number of partitions to consumers.
Yes, that's right. For maximum parallelism, you can have as many number of consumers, as the #partitions, e.g. in your case 5 consumers would give you max parallelism.
There is an assumption built into your understanding that each partition has exactly the same throughput. For most applications, though, that may or may not be true. If you set up your keying/partitioning right, then the partitions should hopefully be close to equal, especially with a large and diverse keyspace if you average them out over a large period of time. But in a more practical, realistic sense, you'll probably have some skew at any given time anyway, and your stream processing setup will need to tolerate that. So having one more partition assigned to a particular consumer is probably not going to make a big difference.
Your understanding is correct. May be there is data skew. You can check how many records are there in each partition by using offset checker or other tool.
I have read from here and a bit not sure about the partition log.
First they say:
For each topic, the Kafka cluster maintains a partitioned log that
looks like this:
Then they show a picture:
Also they say
The partitions in the log serve several purposes. First, they allow
the log to scale beyond a size that will fit on a single server. Each
individual partition must fit on the servers that host it, but a topic
may have many partitions so it can handle an arbitrary amount of data.
Second they act as the unit of parallelism—more on that in a bit.
Do I understand correctly that :
On a cluster, it can have only one partition log of a topic? In other words, two partition of the same topic cannot be in the same cluster?
A Cluster can have multiple partition log from different topics?
The picture about a topic should be more like this?
A topic consist of 1 or many partitions. You specify the number of partitions when creating the topic, and partitions can also be added after creation.
Kafka will spread the partitions on as many brokers as it can in the cluster. If you only have a single broker then they will be all on this broker.
Many partitions from the same topic can live on the same broker. This happens all the time as most clusters only have a dozen brokers and it's not uncommon to have 50 partitions, hence several partitions from the same topic will live on the same broker.
What the docs say is that a partition is a unit that cannot be split. It's either on a broker or not. Whereas a topic is just a collections of partitions that have the same name and configuration.
To answer your question:
For a Kafka cluster of b brokers and a topic with p partitions, each broker will roughly hold p/b partitions as primary copy. They might also hold the replica partitions, but that depends on your replication factor. So, e.g. if you have a 3-node cluster, and a topic test with 6 partitions, each node will have 2 partitions.
Yes, it surely can. Extending the previous point, if you have two topics test1, and test2, each with 6 partitions, then each broker will hold 4 partitions in total (2 for each topics).
I guess in the diagram you have mislabeled brokers as cluster.
I am trying to develop a better understanding of how Kafka works. To keep things simple, currently I am running Kafka on one Zookeeper with 3 brokers and one partition with duplication factor of 3. I learned that, in general, it's better to have number of partitions ~= number of consumers.
Question 1: Do topics share offsets in the same partition?
I have multiple topics (e.g. dogs, cats, dinosaurs) on one partition (e.g. partition 0). Now my producers have produced a message to each of the topics. "msg: bark" to dogs, "msg: meow" to cats and "msg: rawr" to dinosaurs. I noticed that if I specify dogs[0][0], I get back bark and if I do the same on cats and dinosaurs, I do get back each message respectively. This is an awesome feature but it contradicts with my understanding. I thought offset is specific to a partition. If I have pushed three messages into a partition sequentially. Shouldn't the messages be indexed with 0, 1, and 2? Now it seems me that offset is specific to a topic.
This is how I imagined it
['bark', 'meow', 'rawr']
In reality, it looks like this
['bark']
['meow']
['rawr']
But that can't be it. There must be something keeping track of offset and the actual physical location of where the message is in the log file.
Question 2: How do you manage your messages if you were to have multiple partitions for one topic?
In question 1, I have multiple topics in one partition, now let's say I have multiple partitions for one topic. For example, I have 4 partitions for the dogs topic and I have 100 messages to push to my Kafka cluster. Do I distribute the messages evenly across partitions like 25 goes in partition 1, 25 goes in partition 2 and so on...?
If a consumer wants to consume all those 100 messages at once, he/she needs to hit all four partitions. How is this different from hitting 1 partition with 100 messages? Does network bandwidth impose a bottleneck?
Thank you in advance
For your question 1: It is impossible to have multiple topics on one partition. Partition is part of topic conceptually. You can have 3 topics and each of them has only one partition. So you have 3 partitions in total. That explains the behavior that you observed.
For your question 2: AT the producer side, if a valid partition number is specified that partition will be used when sending the record. If no partition is specified but a key is present, a partition will be chosen using a hash of the key. If neither key nor partition is present a partition will be assigned in a round-robin fashion. Now the number of partitions decides the max parallelism. There is a concept called consumer group, which can have multiple consumers in the same group consuming the same topic. In the example you gave, if your topic has only one partition, the max parallelism is one and only one consumer in the consumer group will receive messages (100 of them). But if you have 4 partitions, you can have up to 4 consumers, one for each partition and each receives 25 messages.