Can I condense this expression by using some `map` or `apply`? - purescript

I have this code which I'd like to condense
runFn someFn $ toArray a1 $ toArray a2 $ toArray a3 $ toArray a4
I would envision something like
runFn someFn <$> fmap toArray [a1, a2, a3, a4]
In that case runFn someFn would create a partially applied function that awaits its missing parameters and gets then applied one by one on the elements of the array.
I must admit I dont know if the type system will allow for this.
Edit
As it was asked for - here the actual type signatures for this.
However my question is a more general one:
Can I put the parameters of an function into an array if those parameters are of the same type and the partially apply the function array element by array element.
type Numbers = Array Number
foreign import _intersect :: Numbers -> Numbers -> Numbers -> Numbers -> Point2D
data Point2D = Point2D Number Number
toArray :: Point2D -> Numbers
toArray (Point2D x y) = [x, y]
a1 = Point2D 0.5 7.0
a2 = Point2D 3.0 5.1
b1 = Point2D 2.5 9.0
b2 = Point2D 2.1 3.6
intersection :: Numbers -- 2 element Array Number
intersection = _intersect (toArray a1) (toArray a2) (toArray b1) (toArray b2)

If I understand what you're asking here, no you can't. You'd need dependant types to be able to express this, as you'd need some way of ensuring the function arity and array length are equal at the type level.

If we are allowed to change the question slightly, we might be able to achieve what I think you want. The fact that all functions are curried allows us to use type class instance resolution to come up with some tricks that sort of allow us to do things with functions of arbitrary arity. For example:
module Main where
import Prelude
import Data.Foldable (sum)
import Control.Monad.Eff.Console (print)
class Convert a b where
convert :: a -> b
data Point2D = Point2D Number Number
type Numbers = Array Number
instance convertId :: Convert a a where
convert = id
instance convertPoint :: Convert Point2D (Array Number) where
convert (Point2D x y) = [x, y]
instance convertChain :: (Convert b a, Convert r r') => Convert (a -> r) (b -> r') where
convert a2r b = convert (a2r (convert b))
f :: Numbers -> Numbers -> Number
f xs ys = sum xs * sum ys
g :: Point2D -> Point2D -> Number
g = convert f
f' :: Numbers -> Numbers -> Numbers -> Numbers -> Number
f' a b c d = f a b + f c d
g' :: Point2D -> Point2D -> Point2D -> Point2D -> Number
g' = convert f'
main =
print $ g'
(Point2D 1.0 2.0)
(Point2D 3.0 4.0)
(Point2D 5.0 6.0)
(Point2D 7.0 8.0)
These techniques have some nice applications. QuickCheck, for example, uses a similar technique to allow you to call quickCheck on functions of any arity, as long as all the arguments have Arbitrary instances. In this specific case, though, I think I would stick to the simpler, more boilerplate-y solution: unrestrained use of type classes can become quite unwieldy, and can produce very confusing error messages.

Related

API for handling polymothinc records

It is a little bit custom issue, is not contrived, but just simplified as possible.
-- this record that has fn that handles both x and y,
-- x and y supposed to be Functors, a arbitrary param for x/y, r is arbitrary result param
type R0 a x y r =
{ fn :: x a -> y a -> r
}
-- this record that has fn that handles only x
type R1 a x r =
{ fn :: x a -> r
}
What I want is a common API (function) that could handle values of R0 and R1 types.
So I do a sum type
data T a x y r
= T0 (R0 a x y r)
| T1 (R1 a x r)
And I declare this function, there is a constraint that x and y have to be Functors.
some :: ∀ a x y r.
Functor x =>
Functor y =>
T a x y r -> a
some = unsafeCoerce -- just stub
Then try to use it.
data X a = X { x :: a}
data Y a = Y { y :: a }
-- make X type functor
instance functorX :: Functor X where
map fn (X val) = X { x: fn val.x }
-- make Y type functor
instance functorY :: Functor Y where
map fn (Y val) = Y { y: fn val.y }
-- declare functions
fn0 :: ∀ a. X a -> Y a -> Unit
fn0 = unsafeCoerce
fn1 :: ∀ a. X a -> Unit
fn1 = unsafeCoerce
Trying to apply some:
someRes0 = some $ T0 { fn: fn0 } -- works
someRes1 = some $ T1 { fn: fn1 } -- error becase it can not infer Y which should be functor but is not present in f1.
So the question is: Is it possible to make such API work somehow in a sensible/ergonomic way (that would not require some addition type annotations from a user of this API)?
I could apparently implement different functions some0 and some1 for handling both cases, but I wonder if the way with a single function (which makes API surface simpler) is possilbe.
And what would be other suggestions for implementing such requirements(good API handling such polymorphic record types that differ in a way described above, when one of the records has exessive params)?
You should make T1 and T0 separate types and then make function some itself overloaded to work with them both:
data T0 x y r a = T0 (R0 a x y r)
data T1 x r a = T1 (R1 a x r)
class Some t where
some :: forall a. t a -> a
instance someT0 :: (Functor x, Functor y) => Some (T0 x y r) where
some = unsafeCoerce
instance someT1 :: Functor x => Some (T1 x r) where
some = unsafeCoerce
An alternative, though much less elegant, solution would be to have the caller of some explicitly specify the y type with a type signature. This is the default approach in situations when a type can't be inferred by the compiler:
someRes1 :: forall a. a
someRes1 = some (T1 { fn: fn1 } :: T a X Y Unit)
Note that I had to add a type signature for someRes1 in order to have the type variable a in scope. Otherwise I couldn't use it in the type signature T a X Y Unit.
An even more alternative way to specify y would be to introduce a dummy parameter of type FProxy:
some :: ∀ a x y r.
Functor x =>
Functor y =>
FProxy y -> T a x y r -> a
some _ = unsafeCoerce
someRes0 = some FProxy $ T0 { fn: fn0 }
someRes1 = some (FProxy :: FProxy Maybe) $ T1 { fn: fn1 }
This way you don't have to spell out all parameters of T.
I provided the latter two solutions just for context, but I believe the first one is what you're looking for, based on your description of the problem mentioning "polymorphic methods". This is what type classes are for: they introduce ad-hoc polymorphism.
And speaking of "methods": based on this word, I'm guessing those fn functions are coming from some JavaScript library, right? If that's the case, I believe you're doing it wrong. It's bad practice to leak PureScript-land types into JS code. First of all JS code might accidentally corrupt them (e.g. by mutating), and second, PureScript compiler might change internal representations of those types from version to version, which will break your bindings.
A better way is to always specify FFI bindings in terms of primitives (or in terms of types specifically intended for FFI interactions, such as the FnX family), and then have a layer of PureScript functions that transform PureScript-typed parameters to those primitives and pass them to the FFI functions.

What does >>= mean in purescript?

I was reading the purescript wiki and found following section which explains do in terms of >>=.
What does >>= mean?
Do notation
The do keyword introduces simple syntactic sugar for monadic
expressions.
Here is an example, using the monad for the Maybe type:
maybeSum :: Maybe Number -> Maybe Number -> Maybe Number
maybeSum a b = do
n <- a
m <- b
let result = n + m
return result
maybeSum takes two
values of type Maybe Number and returns their sum if neither number is
Nothing.
When using do notation, there must be a corresponding
instance of the Monad type class for the return type. Statements can
have the following form:
a <- x which desugars to x >>= \a -> ...
x which desugars to x >>= \_ -> ... or just x if this is the last statement.
A let binding let a = x. Note the lack of the in keyword.
The example maybeSum desugars to ::
maybeSum a b =
a >>= \n ->
b >>= \m ->
let result = n + m
in return result
>>= is a function, nothing more. It resides in the Prelude module and has type (>>=) :: forall m a b. (Bind m) => m a -> (a -> m b) -> m b, being an alias for the bind function of the Bind type class. You can find the definitions of the Prelude module in this link, found in the Pursuit package index.
This is closely related to the Monad type class in Haskell, which is a bit easier to find resources. There's a famous question on SO about this concept, which is a good starting point if you're looking to improve your knowledge on the bind function (if you're starting on functional programming now, you can skip it for a while).

Is there a way to derive Num class functions in own data type in Haskell?

Let's say I have a type declaration:
data MyType = N Double | C Char | Placeholder
I want to be able to treat MyType as a Double whenever it's possible, with all the Num, Real, Fractional functions resulting in N (normal result) for arguments wrapped in the N constructor, and Placeholder for other arguments
> (N 5.0) + (N 6.0)
N 11.0
> (N 5.0) + (C 'a')
Placeholder
Is there a way to do this other than simply defining this class as an instance of those classes in a manner similar to:
instance Num MyType where
(+) (N d1) (N d2) = N (d1+d2)
(+) _ _ = Placeholder
...
(which seems counter-productive)?
There is no generic deriving available in standard Haskell: currently, deriving is only available as defined by the compiler for specific Prelude typeclasses: Read, Show, Eq, Ord, Enum, and Bounded.
The Glasgow Haskell Compiler (GHC) apparently has extensions that support generic deriving. However, I don't know if it would actually save you any work to try and use them: how many typeclasses do you need to derive a Num instance from? And, are you sure that you can define an automatic scheme for deriving Num that will always do what you want?
As noted in the comments, you need to describe what your Num instance will do in any case. And describing and debugging a general scheme is certain to be more work than describing a particular one.
No, you can't do this automatically, but I think what leftaroundabout could have been getting at is that you can use Applicative operations to help you.
data MyType n = N n | C Char | Placeholder deriving (Show, Eq, Functor)
instance Applicative MyType where
pure = N
(<*>) = ap
instance Monad MyType where
N n >>= f = f n
C c >>= _ = C c
Placeholder >>= _ = Placeholder
Now you can write
instance Num n => Num (MyType n) where
x + y = (+) <$> x <*> y
abs = fmap abs
...

How to divide a pair of Num values?

Here is a function that takes a pair of Integral
values and divides them:
divide_v1 :: Integral a => (a, a) -> a
divide_v1 (m, n) = (m + n) `div` 2
I invoke the function with a pair of Integral
values and it works as expected:
divide_v1 (1, 3)
Great. That's perfect if my numbers are always Integrals.
Here is a function that takes a pair of Fractional
values and divides them:
divide_v2 :: Fractional a => (a, a) -> a
divide_v2 (m, n) = (m + n) / 2
I invoke the function with a pair of Fractional
values and it works as expected:
divide_v2 (1.0, 3.0)
Great. That's perfect if my numbers are always Fractionals.
I would like a function that works regardless of whether the
numbers are Integrals or Fractionals:
divide_v3 :: Num a => (a, a) -> a
divide_v3 (m, n) = (m + n) ___ 2
What operator do I use for _?
To expand on what AndrewC said, div doesn't have the same properties that / does. For example, in maths, if a divided by b = c, then c times b == a. When working with types like Double and Float, the operations / and * satisfy this property (to the extent that the accuracy of the type allows). But when using div with Ints, the property doesn't hold true. 5 div 3 = 1, but 1*3 /= 5! So if you want to use the same "divide operation" for a variety of numeric types, you need to think about how you want it to behave. Also, you almost certainly wouldn't want to use the same operator /, because that would be misleading.
If you want your "divide operation" to return the same type as its operands, here's one way to accomplish that:
class Divideable a where
mydiv :: a -> a -> a
instance Divideable Int where
mydiv = div
instance Divideable Double where
mydiv = (/)
In GHCi, it looks like this:
λ> 5 `mydiv` 3 :: Int
1
λ> 5 `mydiv` 3 :: Double
1.6666666666666667
λ> 5.0 `mydiv` 3.0 :: Double
1.6666666666666667
On the other hand, if you want to do "true" division, you would need to convert the integral types like this:
class Divideable2 a where
mydiv2 :: a -> a -> Double
instance Divideable2 Int where
mydiv2 a b = fromIntegral a / fromIntegral b
instance Divideable2 Double where
mydiv2 = (/)
In GHCi, this gives:
λ> 5 `mydiv2` 3
1.6666666666666667
λ> 5.0 `mydiv2` 3.0
1.6666666666666667
I think you are looking for Associated Types which allows for implicit type coercion and are explained quite nicely here. Below is an example for the addition of doubles and integers.
class Add a b where
type SumTy a b
add :: a -> b -> SumTy a b
instance Add Integer Double where
type SumTy Integer Double = Double
add x y = fromIntegral x + y
instance Add Double Integer where
type SumTy Double Integer = Double
add x y = x + fromIntegral y
instance (Num a) => Add a a where
type SumTy a a = a
add x y = x + y

Write this Scala Matrix multiplication in Haskell [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Can you overload + in haskell?
Can you implement a Matrix class and an * operator that will work on two matrices?:
scala> val x = Matrix(3, 1,2,3,4,5,6)
x: Matrix =
[1.0, 2.0, 3.0]
[4.0, 5.0, 6.0]
scala> x*x.transpose
res0: Matrix =
[14.0, 32.0]
[32.0, 77.0]
and just so people don't say that it's hard, here is the Scala implementation (courtesy of Jonathan Merritt):
class Matrix(els: List[List[Double]]) {
/** elements of the matrix, stored as a list of
its rows */
val elements: List[List[Double]] = els
def nRows: Int = elements.length
def nCols: Int = if (elements.isEmpty) 0
else elements.head.length
/** all rows of the matrix must have the same
number of columns */
require(elements.forall(_.length == nCols))
/* Add to each elem of matrix */
private def addRows(a: List[Double],
b: List[Double]):
List[Double] =
List.map2(a,b)(_+_)
private def subRows(a: List[Double],
b: List[Double]):List[Double] =
List.map2(a,b)(_-_)
def +(other: Matrix): Matrix = {
require((other.nRows == nRows) &&
(other.nCols == nCols))
new Matrix(
List.map2(elements, other.elements)
(addRows(_,_))
)
}
def -(other: Matrix): Matrix = {
require((other.nRows == nRows) &&
(other.nCols == nCols))
new Matrix(
List.map2(elements, other.elements)
(subRows(_,_))
)
}
def transpose(): Matrix = new Matrix(List.transpose(elements))
private def dotVectors(a: List[Double],
b: List[Double]): Double = {
val multipliedElements =
List.map2(a,b)(_*_)
(0.0 /: multipliedElements)(_+_)
}
def *(other: Matrix): Matrix = {
require(nCols == other.nRows)
val t = other.transpose()
new Matrix(
for (row <- elements) yield {
for (otherCol <- t.elements)
yield dotVectors(row, otherCol)
}
)
override def toString(): String = {
val rowStrings =
for (row <- elements)
yield row.mkString("[", ", ", "]")
rowStrings.mkString("", "\n", "\n")
}
}
/* Matrix constructor from a bunch of numbers */
object Matrix {
def apply(nCols: Int, els: Double*):Matrix = {
def splitRowsWorker(
inList: List[Double],
working: List[List[Double]]):
List[List[Double]] =
if (inList.isEmpty)
working
else {
val (a, b) = inList.splitAt(nCols)
splitRowsWorker(b, working + a)
}
def splitRows(inList: List[Double]) =
splitRowsWorker(inList, List[List[Double]]())
val rows: List[List[Double]] =
splitRows(els.toList)
new Matrix(rows)
}
}
EDIT I understood that strictly speaking the answer is No: overloading * is not possible without side-effects of defining also a + and others or special tricks. The numeric-prelude package describes it best:
In some cases, the hierarchy is not finely-grained enough: Operations
that are often defined independently are lumped together. For
instance, in a financial application one might want a type "Dollar",
or in a graphics application one might want a type "Vector". It is
reasonable to add two Vectors or Dollars, but not, in general,
reasonable to multiply them. But the programmer is currently forced to
define a method for '(*)' when she defines a method for '(+)'.
It'll be perfectly safe with a smart constructor and stored dimensions. Of course there are no natural implementations for the operations signum and fromIntegral (or maybe a diagonal matrix would be fine for the latter).
module Matrix (Matrix(),matrix,matrixTranspose) where
import Data.List (transpose)
data Matrix a = Matrix {matrixN :: Int,
matrixM :: Int,
matrixElems :: [[a]]}
deriving (Show, Eq)
matrix :: Int -> Int -> [[a]] -> Matrix a
matrix n m vals
| length vals /= m = error "Wrong number of rows"
| any (/=n) $ map length vals = error "Column length mismatch"
| otherwise = Matrix n m vals
matrixTranspose (Matrix m n vals) = matrix n m (transpose vals)
instance Num a => Num (Matrix a) where
(+) (Matrix m n vals) (Matrix m' n' vals')
| m/=m' = error "Row number mismatch"
| n/=n' = error "Column number mismatch"
| otherwise = Matrix m n (zipWith (zipWith (+)) vals vals')
abs (Matrix m n vals) = Matrix m n (map (map abs) vals)
negate (Matrix m n vals) = Matrix m n (map (map negate) vals)
(*) (Matrix m n vals) (Matrix n' p vals')
| n/=n' = error "Matrix dimension mismatch in multiplication"
| otherwise = let tvals' = transpose vals'
dot x y = sum $ zipWith (*) x y
result = map (\col -> map (dot col) tvals') vals
in Matrix m p result
Test it in ghci:
*Matrix> let a = matrix 3 2 [[1,0,2],[-1,3,1]]
*Matrix> let b = matrix 2 3 [[3,1],[2,1],[1,0]]
*Matrix> a*b
Matrix {matrixN = 3, matrixM = 3, matrixElems = [[5,1],[4,2]]}
Since my Num instance is generic, it even works for complex matrices out of the box:
Prelude Data.Complex Matrix> let c = matrix 2 2 [[0:+1,1:+0],[5:+2,4:+3]]
Prelude Data.Complex Matrix> let a = matrix 2 2 [[0:+1,1:+0],[5:+2,4:+3]]
Prelude Data.Complex Matrix> let b = matrix 2 3 [[3:+0,1],[2,1],[1,0]]
Prelude Data.Complex Matrix> a
Matrix {matrixN = 2, matrixM = 2, matrixElems = [[0.0 :+ 1.0,1.0 :+ 0.0],[5.0 :+ 2.0,4.0 :+ 3.0]]}
Prelude Data.Complex Matrix> b
Matrix {matrixN = 2, matrixM = 3, matrixElems = [[3.0 :+ 0.0,1.0 :+ 0.0],[2.0 :+ 0.0,1.0 :+ 0.0],[1.0 :+ 0.0,0.0 :+ 0.0]]}
Prelude Data.Complex Matrix> a*b
Matrix {matrixN = 2, matrixM = 3, matrixElems = [[2.0 :+ 3.0,1.0 :+ 1.0],[23.0 :+ 12.0,9.0 :+ 5.0]]}
EDIT: new material
Oh, you want to just override the (*) function without any Num stuff. That's possible to o but you'll have to remember that the Haskell standard library has reserved (*) for use in the Num class.
module Matrix where
import qualified Prelude as P
import Prelude hiding ((*))
import Data.List (transpose)
class Multiply a where
(*) :: a -> a -> a
data Matrix a = Matrix {matrixN :: Int,
matrixM :: Int,
matrixElems :: [[a]]}
deriving (Show, Eq)
matrix :: Int -> Int -> [[a]] -> Matrix a
matrix n m vals
| length vals /= m = error "Wrong number of rows"
| any (/=n) $ map length vals = error "Column length mismatch"
| otherwise = Matrix n m vals
matrixTranspose (Matrix m n vals) = matrix n m (transpose vals)
instance P.Num a => Multiply (Matrix a) where
(*) (Matrix m n vals) (Matrix n' p vals')
| n/=n' = error "Matrix dimension mismatch in multiplication"
| otherwise = let tvals' = transpose vals'
dot x y = sum $ zipWith (P.*) x y
result = map (\col -> map (dot col) tvals') vals
in Matrix m p result
a = matrix 3 2 [[1,2,3],[4,5,6]]
b = a * matrixTranspose
Testing in ghci:
*Matrix> b
Matrix {matrixN = 3, matrixM = 3, matrixElems = [[14,32],[32,77]]}
There. Now if a third module wants to use both the Matrix version of (*) and the Prelude version of (*) it'll have to of course import one or the other qualified. But that's just business as usual.
I could've done all of this without the Multiply type class but this implementation leaves our new shiny (*) open for extension in other modules.
Alright, there's a lot of confusion about what's happening here floating around, and it's not being helped by the fact that the Haskell term "class" does not line up with the OO term "class" in any meaningful way. So let's try to make a careful answer. This answer starts with Haskell's module system.
In Haskell, when you import a module Foo.Bar, it creates a new set of bindings. For each variable x exported by the module Foo.Bar, you get a new name Foo.Bar.x. In addition, you may:
import qualified or not. If you import qualified, nothing more happens. If you do not, an additional name without the module prefix is defined; in this case, just plain old x is defined.
change the qualification prefix or not. If you import as Alias, then the name Foo.Bar.x is not defined, but the name Alias.x is.
hide certain names. If you hide name foo, then neither the plain name foo nor any qualified name (like Foo.Bar.foo or Alias.foo) is defined.
Furthermore, names may be multiply defined. For example, if Foo.Bar and Baz.Quux both export the variable x, and I import both modules without qualification, then the name x refers to both Foo.Bar.x and Baz.Quux.x. If the name x is never used in the resulting module, this clash is ignored; otherwise, a compiler error asks you to provide more qualification.
Finally, if none of your imports mention the module Prelude, the following implicit import is added:
import Prelude
This imports the Prelude without qualification, with no additional prefix, and without hiding any names. So it defines "bare" names and names prefixed by Prelude., and nothing more.
Here ends the bare basics you need to understand about the module system. Now let's discuss the bare basics you need to understand about typeclasses.
A typeclass includes a class name, a list of type variables bound by that class, and a collection of variables with type signatures that refer to the bound variables. Here's an example:
class Foo a where
foo :: a -> a -> Int
The class name is Foo, the bound type variable is a, and there is only one variable in the collection, namely foo, with type signature a -> a -> Int. This class declares that some types have a binary operation, named foo, which computes an Int. Any type may later (even in another module) be declared to be an instance of this class: this involves defining the binary operation above, where the bound type variable a is substituted with the type you are creating an instance for. As an example, we might implement this for integers by the instance:
instance Foo Int where
foo a b = (a `mod` 76) * (b + 7)
Here ends the bare basics you need to understand about typeclasses. We may now answer your question. The only reason the question is tricky is because it falls smack dab on the intersection between two name management techniques: modules and typeclasses. Below I discuss what this means for your specific question.
The module Prelude defines a typeclass named Num, which includes in its collection of variables a variable named *. Therefore, we have several options for the name *:
If the type signature we desire happens to follow the pattern a -> a -> a, for some type a, then we may implement the Num typeclass. We therefore extend the Num class with a new instance; the name Prelude.* and any aliases for this name are extended to work for the new type. For matrices, this would look like, for example,
instance Num Matrix where
m * n = {- implementation goes here -}
We may define a different name than *.
m |*| n = {- implementation goes here -}
We may define the name *. Whether this name is defined as part of a new type class or not is immaterial. If we do nothing else, there will then be at least two definitions of *, namely, the one in the current module and the one implicitly imported from the Prelude. We have a variety of ways of dealing with this. The simplest is to explicitly import the Prelude, and ask for the name * not to be defined:
import Prelude hiding ((*))
You might alternately choose to leave the implicit import of Prelude, and use a qualified * everywhere you use it. Other solutions are also possible.
The main point I want you to take away from this is: the name * is in no way special. It is just a name defined by the Prelude, and all of the tools we have available for namespace control are available.
You can implement * as matrix multiplication by defining an instance of Num class for Matrix. But the code won't be type-safe: * (and other arithmetic operations) on matrices as you define them is not total, because of size mismatch or in case of '/' non-existence of inverse matrices.
As for 'the hierarchy is not defined precisely' - there is also Monoid type class, exactly for the cases when only one operation is defined.
There are too many things to be 'added', sometimes in rather exotic ways (think of permutation groups). Haskell designers designed to reserve arithmetical operations for different representations of numbers, and use other names for more exotic cases.