It is a little bit custom issue, is not contrived, but just simplified as possible.
-- this record that has fn that handles both x and y,
-- x and y supposed to be Functors, a arbitrary param for x/y, r is arbitrary result param
type R0 a x y r =
{ fn :: x a -> y a -> r
}
-- this record that has fn that handles only x
type R1 a x r =
{ fn :: x a -> r
}
What I want is a common API (function) that could handle values of R0 and R1 types.
So I do a sum type
data T a x y r
= T0 (R0 a x y r)
| T1 (R1 a x r)
And I declare this function, there is a constraint that x and y have to be Functors.
some :: ∀ a x y r.
Functor x =>
Functor y =>
T a x y r -> a
some = unsafeCoerce -- just stub
Then try to use it.
data X a = X { x :: a}
data Y a = Y { y :: a }
-- make X type functor
instance functorX :: Functor X where
map fn (X val) = X { x: fn val.x }
-- make Y type functor
instance functorY :: Functor Y where
map fn (Y val) = Y { y: fn val.y }
-- declare functions
fn0 :: ∀ a. X a -> Y a -> Unit
fn0 = unsafeCoerce
fn1 :: ∀ a. X a -> Unit
fn1 = unsafeCoerce
Trying to apply some:
someRes0 = some $ T0 { fn: fn0 } -- works
someRes1 = some $ T1 { fn: fn1 } -- error becase it can not infer Y which should be functor but is not present in f1.
So the question is: Is it possible to make such API work somehow in a sensible/ergonomic way (that would not require some addition type annotations from a user of this API)?
I could apparently implement different functions some0 and some1 for handling both cases, but I wonder if the way with a single function (which makes API surface simpler) is possilbe.
And what would be other suggestions for implementing such requirements(good API handling such polymorphic record types that differ in a way described above, when one of the records has exessive params)?
You should make T1 and T0 separate types and then make function some itself overloaded to work with them both:
data T0 x y r a = T0 (R0 a x y r)
data T1 x r a = T1 (R1 a x r)
class Some t where
some :: forall a. t a -> a
instance someT0 :: (Functor x, Functor y) => Some (T0 x y r) where
some = unsafeCoerce
instance someT1 :: Functor x => Some (T1 x r) where
some = unsafeCoerce
An alternative, though much less elegant, solution would be to have the caller of some explicitly specify the y type with a type signature. This is the default approach in situations when a type can't be inferred by the compiler:
someRes1 :: forall a. a
someRes1 = some (T1 { fn: fn1 } :: T a X Y Unit)
Note that I had to add a type signature for someRes1 in order to have the type variable a in scope. Otherwise I couldn't use it in the type signature T a X Y Unit.
An even more alternative way to specify y would be to introduce a dummy parameter of type FProxy:
some :: ∀ a x y r.
Functor x =>
Functor y =>
FProxy y -> T a x y r -> a
some _ = unsafeCoerce
someRes0 = some FProxy $ T0 { fn: fn0 }
someRes1 = some (FProxy :: FProxy Maybe) $ T1 { fn: fn1 }
This way you don't have to spell out all parameters of T.
I provided the latter two solutions just for context, but I believe the first one is what you're looking for, based on your description of the problem mentioning "polymorphic methods". This is what type classes are for: they introduce ad-hoc polymorphism.
And speaking of "methods": based on this word, I'm guessing those fn functions are coming from some JavaScript library, right? If that's the case, I believe you're doing it wrong. It's bad practice to leak PureScript-land types into JS code. First of all JS code might accidentally corrupt them (e.g. by mutating), and second, PureScript compiler might change internal representations of those types from version to version, which will break your bindings.
A better way is to always specify FFI bindings in terms of primitives (or in terms of types specifically intended for FFI interactions, such as the FnX family), and then have a layer of PureScript functions that transform PureScript-typed parameters to those primitives and pass them to the FFI functions.
Related
The functor of the identity monad can be defined as:
data Identity a = Identity a
Because this monad is free, an alternative definition is the following:
data Term f a = Pure a | Impure (f (Term f a))
data Zero a
type IdentityF a = Term Zero a
Since this is the same monad defined in two ways, they shoud be
convertible into each other. That is to say that one should be able to define two
functions f :: Identity a -> IdentityF a and g :: IdentityF a -> Identity a such that their compositions f . g and g . f are
identities. The function f is easy to define:
f :: Identity a -> IdentityF a
f (Identity a) = Pure a
But what about the function g?
g :: IdentityF a -> Identity a
g (Pure a) = Identity a
g (Impure x) = ??????
What should be the value of g (Impure x). I could try to cheat and say it
is undefined but then f . g would not be the identity function and
Identity and IdentityF would not be isomorphic.
One suitable definition is:
g (Impure x) = case x of
There are no branches in the case. This was not a typo. There are exactly as many branches in the case as there are constructors in Zero a, as required; this is a complete pattern match.
(You must turn on the EmptyCase extension for GHC to accept this as-is.)
Is there any way to do something like
first = {x:0}
second = {x:1,y:1}
both = [first, second]
such that both is inferred as {x::Int | r} or something like that?
I've tried a few things:
[{x:3}] :: Array(forall r. {x::Int|r}) -- nope
test = Nil :: List(forall r. {x::Int|r})
{x:1} : test -- nope
type X r = {x::Int | r}
test = Nil :: List(X) -- nope
test = Nil :: List(X())
{x:1} : test
{x:1, y:1} : test -- nope
Everything I can think of seems to tell me that combining records like this into a collection is not supported. Kind of like, a function can be polymorphic but a list cannot. Is that the correct interpretation? It reminds me a bit of the F# "value restriction" problem, though I thought that was just because of CLR restrictions whereas JS should not have that issue. But maybe it's unrelated.
Is there any way to declare the list/array to support this?
What you're looking for is "existential types", and PureScript just doesn't support those at the syntax level the way Haskell does. But you can roll your own :-)
One way to go is "data abstraction" - i.e. encode the data in terms of operations you'll want to perform on it. For example, let's say you'll want to get the value of x out of them at some point. In that case, make an array of these:
type RecordRep = Unit -> Int
toRecordRep :: forall r. { x :: Int | r } -> RecordRep
toRecordRep {x} _ = x
-- Construct the array using `toRecordRep`
test :: Array RecordRep
test = [ toRecordRep {x:1}, toRecordRep {x:1, y:1} ]
-- Later use the operation
allTheXs :: Array Int
allTheXs = test <#> \r -> r unit
If you have multiple such operations, you can always make a record of them:
type RecordRep =
{ getX :: Unit -> Int
, show :: Unit -> String
, toJavaScript :: Unit -> Foreign.Object
}
toRecordRep r =
{ getX: const r.x
, show: const $ show r.x
, toJavaScript: const $ unsafeCoerce r
}
(note the Unit arguments in every function - they're there for the laziness, assuming each operation could be expensive)
But if you really need the type machinery, you can do what I call "poor man's existential type". If you look closely, existential types are nothing more than "deferred" type checks - deferred to the point where you'll need to see the type. And what's a mechanism to defer something in an ML language? That's right - a function! :-)
newtype RecordRep = RecordRep (forall a. (forall r. {x::Int|r} -> a) -> a)
toRecordRep :: forall r. {x::Int|r} -> RecordRep
toRecordRep r = RecordRep \f -> f r
test :: Array RecordRep
test = [toRecordRep {x:1}, toRecordRep {x:1, y:1}]
allTheXs = test <#> \(RecordRep r) -> r _.x
The way this works is that RecordRep wraps a function, which takes another function, which is polymorphic in r - that is, if you're looking at a RecordRep, you must be prepared to give it a function that can work with any r. toRecordRep wraps the record in such a way that its precise type is not visible on the outside, but it will be used to instantiate the generic function, which you will eventually provide. In my example such function is _.x.
Note, however, that herein lies the problem: the row r is literally not known when you get to work with an element of the array, so you can't do anything with it. Like, at all. All you can do is get the x field, because its existence is hardcoded in the signatures, but besides the x - you just don't know. And that's by design: if you want to put anything into the array, you must be prepared to get anything out of it.
Now, if you do want to do something with the values after all, you'll have to explain that by constraining r, for example:
newtype RecordRep = RecordRep (forall a. (forall r. Show {x::Int|r} => {x::Int|r} -> a) -> a)
toRecordRep :: forall r. Show {x::Int|r} => {x::Int|r} -> RecordRep
toRecordRep r = RecordRep \f -> f r
test :: Array RecordRep
test = [toRecordRep {x:1}, toRecordRep {x:1, y:1}]
showAll = test <#> \(RecordRep r) -> r show
Passing the show function like this works, because we have constrained the row r in such a way that Show {x::Int|r} must exist, and therefore, applying show to {x::Int|r} must work. Repeat for your own type classes as needed.
And here's the interesting part: since type classes are implemented as dictionaries of functions, the two options described above are actually equivalent - in both cases you end up passing around a dictionary of functions, only in the first case it's explicit, but in the second case the compiler does it for you.
Incidentally, this is how Haskell language support for this works as well.
Folloing #FyodorSoikin answer based on "existential types" and what we can find in purescript-exists we can provide yet another solution.
Finally we will be able to build an Array of records which will be "isomorphic" to:
exists tail. Array { x :: Int | tail }
Let's start with type constructor which can be used to existentially quantify over a row type (type of kind #Type). We are not able to use Exists from purescript-exists here because PureScript has no kind polymorphism and original Exists is parameterized over Type.
newtype Exists f = Exists (forall a. f (a :: #Type))
We can follow and reimplement (<Ctrl-c><Ctrl-v> ;-)) definitions from Data.Exists and build a set of tools to work with such Exists values:
module Main where
import Prelude
import Unsafe.Coerce (unsafeCoerce)
import Data.Newtype (class Newtype, unwrap)
newtype Exists f = Exists (forall a. f (a :: #Type))
mkExists :: forall f a. f a -> Exists f
mkExists r = Exists (unsafeCoerce r :: forall a. f a)
runExists :: forall b f. (forall a. f a -> b) -> Exists f -> b
runExists g (Exists f) = g f
Using them we get the ability to build an Array of Records with "any" tail but we have to wrap any such a record type in a newtype before:
newtype R t = R { x :: Int | t }
derive instance newtypeRec :: Newtype (R t) _
Now we can build an Array using mkExists:
arr :: Array (Exists R)
arr = [ mkExists (R { x: 8, y : "test"}), mkExists (R { x: 9, z: 10}) ]
and process values using runExists:
x :: Array [ Int ]
x = map (runExists (unwrap >>> _.x)) arr
It is a standard example of beginner's textbooks on category theory to argue that a preorder gives rise to a category (where the hom-set hom(x,y) is a singleton or empty depending on whether x <= y). When attempting to formalize this idea in coq, it is natural to view an arrow of as a triple (x,y,pxy) where x y:A (A being a type on which we have a preorder) and pxy is a proof that x <= y. So naturally, when attempting to define a composition of two arrows (x,y,pxy) and (y',z,pyz), we need to returnSome arrow whenever y = y' (or None otherwise). This implies that we are able to test for equality within the function, and compute a proof (the last field of our triple, which may rely on the fact that things are equal).
For the sake of this question, suppose I have:
Parameter eq_dec : forall {A:Type}, A -> A -> bool.
and:
Axiom eq_dec_correct : forall (A:Type) (x y:A),
eq_dec x y = true -> x = y. (* don't care about equivalence here *)
and let us assume I am attempting something simpler than defining composition between arrows, by writing a function which returns a proof that x = y whenever x = y.
Definition test {A:Type} (x y : A) : option (x = y) :=
match eq_dec x y with
| true => Some (eq_dec_correct A x y _)
| false => None
end.
This doesn't work of course, but probably gives you the idea of what I am trying to achieve. Any suggestion is greatly appreciated.
EDIT: Ok it seems this is a case of 'convoy pattern'. I have found this link which suggested to me:
Definition test (A:Type) (x y:A) : option (x = y) :=
match eq_dec x y as b return eq_dec x y = b -> option (x = y) with
| true => fun p => Some (eq_dec_correct A x y p)
| false => fun _ => None
end (eq_refl (eq_dec x y)).
This seems to be working. It is a bit magical and confusing but I'll get my head round it.
I'm working on making my data types general instead of taking in the OpenGL type GLfloat. So I started making it take in type a and then just replacing everything with that.
Now, I've come to a point where I'm setting uniform variables, but they take in GLfloat's. I'm using a library called GLUtil which makes it a bit easier, which has provided a class AsUniform, to check whether the type can be a uniform variable or not. I stick it in my type signature, but it stills gives me an error. Here's the code:
-- | Sets the modelview and projection matrix uniform variables.
mvpUnif :: (GL.UniformComponent a, Num a, Epsilon a, Floating a, AsUniform a) => (GLState a) -> ShaderProgram -> IO ()
mvpUnif state p = do
-- Check if view and projection matrices are there, else set them to the identity.
let vMat = case vMatrix state of
Just v -> v
Nothing -> getIdentity
let pMat = case pMatrix state of
Just p -> p
Nothing -> getIdentity
-- Multiply model and view matrix together.
let mvMatrix = vMat !*! mMatrix state
setUniform p uModelViewMatrixVar mvMatrix
setUniform p uProjectionMatrixVar pMat
and the error:
Could not deduce (AsUniform (V4 (V4 a)))
arising from a use of `setUniform'
from the context (GL.UniformComponent a,
Num a,
Epsilon a,
Floating a,
AsUniform a)
bound by the type signature for
mvpUnif :: (GL.UniformComponent a, Num a, Epsilon a, Floating a
,
AsUniform a) =>
GLState a -> ShaderProgram -> IO ()
at src\Graphics\FreeD\Shaders\DefaultShaders.hs:194:12-119
In a stmt of a 'do' block:
setUniform p uModelViewMatrixVar mvMatrix
In the expression:
do { let vMat = ...;
let pMat = ...;
let mvMatrix = vMat !*! mMatrix state;
setUniform p uModelViewMatrixVar mvMatrix;
.... }
In an equation for `mvpUnif':
mvpUnif state p
= do { let vMat = ...;
let pMat = ...;
let mvMatrix = ...;
.... }
V4 is made an instance of AsUniform, as well as M44, which is a type for (V4 (V4 a)), which I thought might be the issue, so I'm not sure why it's acting up.
Here's the source for the class:
http://hackage.haskell.org/package/GLUtil-0.8.5/docs/Graphics-GLUtil-Linear.html
Thanks!
Try adding -XFlexibleContexts and the constraint, literally, to your existing answer:
{-# LANGUAGE FlexibleContexts #-}
mvpUnif :: ( GL.UniformComponent a
, Num a
, Epsilon a
, Floating a
, AsUniform a
, AsUniform (V4 (V4 a))
) => (GLState a) -> ShaderProgram -> IO ()
Usually this is the routine for constraints that aren't inferrable, or where constraints need to be transitively included in all call sites. This happens to me all the time with MonadState et al. In this case, setUniform is the culprit.
I'm kind of new to Coq.
I'm trying to implement a generic version of insertion sort. I'm implementing is as a module that takes a Comparator as a parameter. This Comparator implements comparison operators (such as is_eq, is_le, is_neq, etc.).
In insertion sort, in order to insert, I must compare two elements in the input list, and based on the result of the comparison, insert the element into the correct location.
My problem is that the implementations of the comparison operators are type -> type -> prop (i need them to be like this for implementation of other types/proofs). I'd rather not create type -> type -> bool versions of the operators if it can be avoided.
Is there any way to convert a True | False prop to a bool for use in a if ... then ... else clause?
The comparator module type:
Module Type ComparatorSig.
Parameter X: Set.
Parameter is_eq : X -> X -> Prop.
Parameter is_le : X -> X -> Prop.
Parameter is_neq : X -> X -> Prop.
Infix "=" := is_eq (at level 70).
Infix "<>" := (~ is_eq) (at level 70).
Infix "<=" := is_le (at level 70).
Parameter eqDec : forall x y : X, { x = y } + { x <> y }.
Axiom is_le_trans : forall (x y z:X), is_le x y -> is_le y z -> is_le x z.
End ComparatorSig.
An implementation for natural numbers:
Module IntComparator <: Comparator.ComparatorSig.
Definition X := nat.
Definition is_le x y := x <= y.
Definition is_eq x y := eq_nat x y.
Definition is_neq x y:= ~ is_eq x y.
Definition eqDec := eq_nat_dec.
Definition is_le_trans := le_trans.
End IntComparator.
The insertion part of insertion sort:
Fixpoint insert (x : IntComparator .X) (l : list IntComparator .X) :=
match l with
| nil => x :: nil
| h :: tl => if IntComparator.is_le x h then x :: h :: tl else h :: (insert x tl)
end.
(obviously, the insert fixpoint doesn't work, since is_le is returns Prop and not bool).
Any help is appreciated.
You seem to be a bit confused about Prop.
is_le x y is of type Prop, and is the statement x is less or equal to y. It is not a proof that this statement is correct. A proof that this statement is correct would be p : is_le x y, an inhabitant of that type (i.e. a witness of that statement's truth).
This is why it does not make much sense to pattern match on IntComparator.is_le x h.
A better interface would be the following:
Module Type ComparatorSig.
Parameter X: Set.
Parameter is_le : X -> X -> Prop.
Parameter is_le_dec : forall x y, { is_le x y } + { ~ is_le x y }.
In particular, the type of is_le_dec is that of a decision procedure for the property is_le, that is, it returns either a proof that x <= y, or a proof that ~ (x <= y). Since this is a type with two constructors, you can leverage the if sugar:
... (if IntComparator.is_le_dec x h then ... else ...) ...
This is, in some sense, an enhanced bool, which returns a witness for what it is trying to decide. The type in question is called sumbool and you can learn about it here:
http://coq.inria.fr/library/Coq.Init.Specif.html#sumbool
In general, it does not make sense to talk about True or False in executing code.
First, because these live in Prop, which means that they cannot be computationally relevant as they will be erased.
Second, because they are not the only inhabitants of Prop. While true and false are the only values of type bool, which implies you can pattern-match, the type Prop contains an infinite number of elements (all the statements you can imagine), thus it makes no sense to try and pattern-match on a element of type Prop.