I am playing around with different languages to solve a simple value function iteration problem where I loop over a state-space grid. I am trying to understand the performance differences and how I could tweak each code. For posterity I have posted full length working examples for each language below. However, I believe that most of the tweaking is to be done in the while loop. I am a bit confused what I am doing wrong in Fortran as the speed seems subpar.
Matlab ~2.7secs : I am avoiding a more efficient solution using the repmat function for now to keep the codes comparable. Code seems to be automatically multithreaded onto 4 threads
beta = 0.98;
sigma = 0.5;
R = 1/beta;
a_grid = linspace(0,100,1001);
tic
[V_mat, next_mat] = valfun(beta, sigma, R ,a_grid);
toc
where valfun()
function [V_mat, next_mat] = valfun(beta, sigma, R, a_grid)
zeta = 1-1/sigma;
len = length(a_grid);
V_mat = zeros(2,len);
next_mat = zeros(2,len);
u = zeros(2,len,len);
c = zeros(2,len,len);
for i = 1:len
c(1,:,i) = a_grid(i) - a_grid/R + 20.0;
c(2,:,i) = a_grid(i) - a_grid/R;
end
u = c.^zeta * zeta^(-1);
u(c<=0) = -1e8;
tol = 1e-4;
outeriter = 0;
diff = 1000.0;
while (diff>tol) %&& (outeriter<20000)
outeriter = outeriter + 1;
V_last = V_mat;
for i = 1:len
[V_mat(1,i), next_mat(1,i)] = max( u(1,:,i) + beta*V_last(2,:));
[V_mat(2,i), next_mat(2,i)] = max( u(2,:,i) + beta*V_last(1,:));
end
diff = max(abs(V_mat - V_last));
end
fprintf("\n Value Function converged in %i steps. \n", outeriter)
end
Julia (after compilation) ~5.4secs (4 threads (9425469 allocations: 22.43 GiB)), ~7.8secs (1 thread (2912564 allocations: 22.29 GiB))
[EDIT: after adding correct broadcasting and #views its only 1.8-2.1seconds now, see below!]
using LinearAlgebra, UnPack, BenchmarkTools
struct paramsnew
β::Float64
σ::Float64
R::Float64
end
function valfun(params, a_grid)
#unpack β,σ, R = params
ζ = 1-1/σ
len = length(a_grid)
V_mat = zeros(2,len)
next_mat = zeros(2,len)
u = zeros(2,len,len)
c = zeros(2,len,len)
#inbounds for i in 1:len
c[1,:,i] = #. a_grid[i] - a_grid/R .+ 20.0
c[2,:,i] = #. a_grid[i] - a_grid/R
end
u = c.^ζ * ζ^(-1)
u[c.<=0] .= typemin(Float64)
tol = 1e-4
outeriter = 0
test = 1000.0
while test>tol
outeriter += 1
V_last = deepcopy(V_mat)
#inbounds Threads.#threads for i in 1:len # loop over grid points
V_mat[1,i], next_mat[1,i] = findmax( u[1,:,i] .+ β*V_last[2,:])
V_mat[2,i], next_mat[2,i] = findmax( u[2,:,i] .+ β*V_last[1,:])
end
test = maximum( abs.(V_mat - V_last)[.!isnan.( V_mat - V_last )])
end
print("\n Value Function converged in ", outeriter, " steps.")
return V_mat, next_mat
end
a_grid = collect(0:0.1:100)
p1 = paramsnew(0.98, 1/2, 1/0.98);
#time valfun(p1,a_grid)
print("\n should be compiled now \n")
#btime valfun(p1,a_grid)
Fortran (O3, mkl, qopenmp) ~9.2secs: I also must be doing something wrong when declaring the openmp variables as the compilation will crash for some grid sizes when using openmp (SIGSEGV error).
module mod_calc
use omp_lib
implicit none
integer, parameter :: dp = selected_real_kind(33,4931), len = 1001
public :: dp, len
contains
subroutine linspace(from, to, array)
real(dp), intent(in) :: from, to
real(dp), intent(out) :: array(:)
real(dp) :: range
integer :: n, i
n = size(array)
range = to - from
if (n == 0) return
if (n == 1) then
array(1) = from
return
end if
do i=1, n
array(i) = from + range * (i - 1) / (n - 1)
end do
end subroutine
subroutine calc_val()
real(dp):: bbeta, sigma, R, zeta, tol, test
real(dp):: a_grid(len), V_mat(2,len), V_last(2,len), &
u(len,len,2), c(len,len,2)
integer :: outeriter, i, sss, next_mat(2,len), fu
character(len=*), parameter :: FILE_NAME = 'data.txt' ! File name.
call linspace(from=0._dp, to=100._dp, array=a_grid)
bbeta = 0.98
sigma = 0.5
R = 1.0/0.98
zeta = 1.0 - 1.0/sigma
tol = 1e-4
test = 1000.0
outeriter = 0
do i = 1,len
c(:,i,1) = a_grid(i) - a_grid/R + 20.0
c(:,i,2) = a_grid(i) - a_grid/R
end do
u = c**zeta * 1.0/zeta
where (c<=0)
u = -1e6
end where
V_mat = 0.0
next_mat = 0.0
do while (test>tol .and. outeriter<20000)
outeriter = outeriter+1
V_last = V_mat
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(V_mat, next_mat,V_last, u, bbeta) &
!$OMP PRIVATE(i)
!$OMP DO SCHEDULE(static)
do i=1,len
V_mat(1,i) = maxval(u(:,i,1) + bbeta*V_last(2,:))
next_mat(1,i) = maxloc(u(:,i,1) + bbeta*V_last(2,:),1)
V_mat(2,i) = maxval(u(:,i,2) + bbeta*V_last(1,:))
next_mat(2,i) = maxloc(u(:,i,2) + bbeta*V_last(1,:),1)
end do
!$OMP END DO
!$OMP END PARALLEL
test = maxval(abs(log(V_last/V_mat)))
end do
end subroutine
end module mod_calc
program main
use mod_calc
implicit none
integer:: clck_counts_beg,clck_rate,clck_counts_end
call omp_set_num_threads(4)
call system_clock ( clck_counts_beg, clck_rate )
call calc_val()
call system_clock ( clck_counts_end, clck_rate )
write (*, '("Time = ",f6.3," seconds.")') (clck_counts_end - clck_counts_beg) / real(clck_rate)
end program main
There should be ways to reduce the amount of allocations (Julia reports 32-45% gc time!) but for now I am too novice to see them, so any comments and tipps are welcome.
Edit:
Adding #views and correct broadcasting to the while loop improved the Julia speed considerably (as expected, I guess) and hence beats the Matlab loop now. With 4 threads the code now takes only 1.97secs. Specifically,
#inbounds for i in 1:len
c[1,:,i] = #views #. a_grid[i] - a_grid/R .+ 20.0
c[2,:,i] = #views #. a_grid[i] - a_grid/R
end
u = #. c^ζ * ζ^(-1)
#. u[c<=0] = typemin(Float64)
while test>tol && outeriter<20000
outeriter += 1
V_last = deepcopy(V_mat)
#inbounds Threads.#threads for i in 1:len # loop over grid points
V_mat[1,i], next_mat[1,i] = #views findmax( #. u[1,:,i] + β*V_last[2,:])
V_mat[2,i], next_mat[2,i] = #views findmax( #. u[2,:,i] + β*V_last[1,:])
end
test = #views maximum( #. abs(V_mat - V_last)[!isnan( V_mat - V_last )])
end
The reason the fortran is so slow is that it is using quadruple precision - I don't know Julia or Matlab but it looks as though double precision is being used in that case. Further as noted in the comments some of the loop orders are incorrect for Fortran, and also you are not consistent in your use of precision in the Fortran code, most of your constants are single precision. Correcting all these leads to the following:
Original: test = 9.83440674663232047922921588613472439E-0005 Time =
31.413 seconds.
Optimised: test = 9.8343643237979391E-005 Time = 0.912 seconds.
Note I have turned off parallelisation for these, all results are single threaded. Code is below:
module mod_calc
!!$ use omp_lib
implicit none
!!$ integer, parameter :: dp = selected_real_kind(33,4931), len = 1001
integer, parameter :: dp = selected_real_kind(15), len = 1001
public :: dp, len
contains
subroutine linspace(from, to, array)
real(dp), intent(in) :: from, to
real(dp), intent(out) :: array(:)
real(dp) :: range
integer :: n, i
n = size(array)
range = to - from
if (n == 0) return
if (n == 1) then
array(1) = from
return
end if
do i=1, n
array(i) = from + range * (i - 1) / (n - 1)
end do
end subroutine
subroutine calc_val()
real(dp):: bbeta, sigma, R, zeta, tol, test
real(dp):: a_grid(len), V_mat(len,2), V_last(len,2), &
u(len,len,2), c(len,len,2)
integer :: outeriter, i, sss, next_mat(2,len), fu
character(len=*), parameter :: FILE_NAME = 'data.txt' ! File name.
call linspace(from=0._dp, to=100._dp, array=a_grid)
bbeta = 0.98_dp
sigma = 0.5_dp
R = 1.0_dp/0.98_dp
zeta = 1.0_dp - 1.0_dp/sigma
tol = 1e-4_dp
test = 1000.0_dp
outeriter = 0
do i = 1,len
c(:,i,1) = a_grid(i) - a_grid/R + 20.0_dp
c(:,i,2) = a_grid(i) - a_grid/R
end do
u = c**zeta * 1.0_dp/zeta
where (c<=0)
u = -1e6_dp
end where
V_mat = 0.0_dp
next_mat = 0.0_dp
do while (test>tol .and. outeriter<20000)
outeriter = outeriter+1
V_last = V_mat
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(V_mat, next_mat,V_last, u, bbeta) &
!$OMP PRIVATE(i)
!$OMP DO SCHEDULE(static)
do i=1,len
V_mat(i,1) = maxval(u(:,i,1) + bbeta*V_last(:, 2))
next_mat(i,1) = maxloc(u(:,i,1) + bbeta*V_last(:, 2),1)
V_mat(i,2) = maxval(u(:,i,2) + bbeta*V_last(:, 1))
next_mat(i,2) = maxloc(u(:,i,2) + bbeta*V_last(:, 1),1)
end do
!$OMP END DO
!$OMP END PARALLEL
test = maxval(abs(log(V_last/V_mat)))
end do
Write( *, * ) test
end subroutine
end module mod_calc
program main
use mod_calc
implicit none
integer:: clck_counts_beg,clck_rate,clck_counts_end
!!$ call omp_set_num_threads(2)
call system_clock ( clck_counts_beg, clck_rate )
call calc_val()
call system_clock ( clck_counts_end, clck_rate )
write (*, '("Time = ",f6.3," seconds.")') (clck_counts_end - clck_counts_beg) / real(clck_rate)
end program main
Compilation / linking:
ian#eris:~/work/stack$ gfortran --version
GNU Fortran (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
ian#eris:~/work/stack$ gfortran -Wall -Wextra -O3 jul.f90
jul.f90:36:48:
character(len=*), parameter :: FILE_NAME = 'data.txt' ! File name.
1
Warning: Unused parameter ‘file_name’ declared at (1) [-Wunused-parameter]
jul.f90:35:57:
integer :: outeriter, i, sss, next_mat(2,len), fu
1
Warning: Unused variable ‘fu’ declared at (1) [-Wunused-variable]
jul.f90:35:36:
integer :: outeriter, i, sss, next_mat(2,len), fu
1
Warning: Unused variable ‘sss’ declared at (1) [-Wunused-variable]
Running:
ian#eris:~/work/stack$ ./a.out
9.8343643237979391E-005
Time = 0.908 seconds.
What #Ian Bush says in his answer about the dual precision is correct. Moreover,
You will likely not need openmp for the kind of parallelization you have done in your code. The Fortran's intrinsic do concurrent() will automatically parallelize the loop for you (when the code is compiled with the parallel flag of the respective compiler).
Also, the where elsewhere construct is slow as it often requires the creation of a logical mask array and then applying it in a do-loop. You can use do concurrent() in place of where to both avoid the extra temporary array creation and parallelize the computation on multiple cores.
Also, when comparing 64bit precision numbers, it's good to make sure both values are the same type and kind to avoid an implicit type/kind conversion before the comparison is made.
Also, the calculation of a_grid(i) - a_grid/R in computing the c array is redundant and can be avoided in the subsequent line.
Here is the modified optimized parallel Fortran code without any OpenMP,
module mod_calc
use iso_fortran_env, only: dp => real64
implicit none
integer, parameter :: len = 1001
public :: dp, len
contains
subroutine linspace(from, to, array)
real(dp), intent(in) :: from, to
real(dp), intent(out) :: array(:)
real(dp) :: range
integer :: n, i
n = size(array)
range = to - from
if (n == 0) return
if (n == 1) then
array(1) = from
return
end if
do concurrent(i=1:n)
array(i) = from + range * (i - 1) / (n - 1)
end do
end subroutine
subroutine calc_val()
implicit none
real(dp) :: bbeta, sigma, R, zeta, tol, test
real(dp) :: a_grid(len), V_mat(len,2), V_last(len,2), u(len,len,2), c(len,len,2)
integer :: outeriter, i, j, k, sss, next_mat(2,len), fu
character(len=*), parameter :: FILE_NAME = 'data.txt' ! File name.
call linspace(from=0._dp, to=100._dp, array=a_grid)
bbeta = 0.98_dp
sigma = 0.5_dp
R = 1.0_dp/0.98_dp
zeta = 1.0_dp - 1.0_dp/sigma
tol = 1e-4_dp
test = 1000.0_dp
outeriter = 0
do concurrent(i=1:len)
c(1:len,i,2) = a_grid(i) - a_grid/R
c(1:len,i,1) = c(1:len,i,2) + 20.0_dp
end do
u = c**zeta * 1.0_dp/zeta
do concurrent(i=1:len, j=1:len, k=1:2)
if (c(i,j,k)<=0._dp) u(i,j,k) = -1e6_dp
end do
V_mat = 0.0_dp
next_mat = 0.0_dp
do while (test>tol .and. outeriter<20000)
outeriter = outeriter + 1
V_last = V_mat
do concurrent(i=1:len)
V_mat(i,1) = maxval(u(:,i,1) + bbeta*V_last(:, 2))
next_mat(i,1) = maxloc(u(:,i,1) + bbeta*V_last(:, 2),1)
V_mat(i,2) = maxval(u(:,i,2) + bbeta*V_last(:, 1))
next_mat(i,2) = maxloc(u(:,i,2) + bbeta*V_last(:, 1),1)
end do
test = maxval(abs(log(V_last/V_mat)))
end do
Write( *, * ) test
end subroutine
end module mod_calc
program main
use mod_calc
implicit none
integer:: clck_counts_beg,clck_rate,clck_counts_end
call system_clock ( clck_counts_beg, clck_rate )
call calc_val()
call system_clock ( clck_counts_end, clck_rate )
write (*, '("Time = ",f6.3," seconds.")') (clck_counts_end - clck_counts_beg) / real(clck_rate)
end program main
Compiling your original code with /standard-semantics /F0x1000000000 /O3 /Qip /Qipo /Qunroll /Qunroll-aggressive /inline:all /Ob2 /Qparallel Intel Fortran compiler flags, yields the following timing,
original.exe
Time = 37.284 seconds.
compiling and running the parallel concurrent Fortran code in the above (on at most 4 cores, if any at all is used) yields,
concurrent.exe
Time = 0.149 seconds.
For comparison, this MATLAB's timing,
Value Function converged in 362 steps.
Elapsed time is 3.575691 seconds.
One last tip: There are several vectorized array computations and loops in the above code that can still be merged together to even further improve the speed of your Fortran code. For example,
u = c**zeta * 1.0_dp/zeta
do concurrent(i=1:len, j=1:len, k=1:2)
if (c(i,j,k)<=0._dp) u(i,j,k) = -1e6_dp
end do
in the above code can be all merged with the do concurrent loop appearing before it,
do concurrent(i=1:len)
c(1:len,i,2) = a_grid(i) - a_grid/R
c(1:len,i,1) = c(1:len,i,2) + 20.0_dp
end do
If you decide to do so, then you can define an auxiliary variable inverse_zeta = 1.0_dp / zeta to use in the computation of u inside the loop instead of using * 1.0_dp / zeta, thus avoiding the extra division (which is more costly than multiplication), without degrading the readability of the code.
This question already has answers here:
Generate random number with given probability matlab
(7 answers)
Draw random numbers from pre-specified probability mass function in Matlab
(1 answer)
Closed 3 years ago.
I want to generate some random numbers, that is for such distribution:
10% of them are in Category A (T = 6),
40% of them are in Category B (T = 8),
40% of them are in Category C (T = 10),
10% of them are in Category D (T = 12).
I just started to learn MATLAB and I tried rand(x) and randn(x) but it seems neither of them can do that?
You'll have to set up some kind of mapping from the uniformly distributed random numbers you get from rand to your desired values, i.e. with respect to the wanted distribution.
In my solution, I generate random numbers using rand, and map them to integers 1, 2, 3, 4 as well as to (categorical) characters A, B, C, D. I built a whole function to support variable amount of input arguments to mimic the behaviour of rand.
That's the code of the myRand function:
function [rn, in, ch] = myRand(varargin)
% No input arguments.
if (numel(varargin) == 0)
rn = rand();
% One input argument; might be a scalar or an array.
elseif (numel(varargin) == 1)
a = varargin{1};
if (!isnumeric(a))
error('myRand: argument must be numeric');
end
rn = rand(a);
% More than one input argument; must be scalars.
elseif (numel(varargin) > 1)
if (!all(cellfun(#(x)isnumeric(x), varargin)))
error('myRand: arguments must be numeric');
end
if (!all(cellfun(#(x)isscalar(x), varargin)))
error('myRand: arguments must be scalar');
end
rn = rand(varargin{:});
end
in = zeros(size(rn));
in((0 <= rn) & (rn < 0.1)) = 1;
in((0.1 <= rn) & (rn < 0.5)) = 2;
in((0.5 <= rn) & (rn < 0.9)) = 3;
in((0.9 <= rn) & (rn < 1)) = 4;
ch = cell(size(rn));
ch((0 <= rn) & (rn < 0.1)) = { 'A' };
ch((0.1 <= rn) & (rn < 0.5)) = { 'B' };
ch((0.5 <= rn) & (rn < 0.9)) = { 'C' };
ch((0.9 <= rn) & (rn < 1)) = { 'D' };
end
And, here's some test code with the corresponding outputs:
% Single random number with integer and category
[rn, in, ch] = myRand()
% Multiple random numbers with integers and categories (array input)
[rn, in, ch] = myRand([2, 3])
% Multiple random numbers with integers and categories (multiple scalars input)
[rn, in, ch] = myRand(2, 3)
rn = 0.19904
in = 2
ch =
{
[1,1] = B
}
rn =
0.206294 0.420426 0.835194
0.793874 0.593371 0.034055
in =
2 2 3
3 3 1
ch =
{
[1,1] = B
[2,1] = C
[1,2] = B
[2,2] = C
[1,3] = C
[2,3] = A
}
rn =
0.96223 0.87840 0.49925
0.54890 0.88436 0.92096
in =
4 3 2
3 3 4
ch =
{
[1,1] = D
[2,1] = C
[1,2] = C
[2,2] = C
[1,3] = B
[2,3] = D
}
Hope that helps!
Disclaimer: I tested the code with Octave 5.1.0, but I'm quite sure, that it should be fully MATLAB-compatible. If not, please leave a comment, and I'll try to fix possible issues.
(note: not the same as this other question since the OP never explicitly specified rounding towards 0 or -Infinity)
JLS 15.17.2 says that integer division rounds towards zero. If I want floor()-like behavior for positive divisors (I don't care about the behavior for negative divisors), what's the simplest way to achieve this that is numerically correct for all inputs?
int ifloor(int n, int d)
{
/* returns q such that n = d*q + r where 0 <= r < d
* for all integer n, d where d > 0
*
* d = 0 should have the same behavior as `n/d`
*
* nice-to-have behaviors for d < 0:
* option (a). same as above:
* returns q such that n = d*q + r where 0 <= r < -d
* option (b). rounds towards +infinity:
* returns q such that n = d*q + r where d < r <= 0
*/
}
long lfloor(long n, long d)
{
/* same behavior as ifloor, except for long integers */
}
(update: I want to have a solution both for int and long arithmetic.)
If you can use third-party libraries, Guava has this: IntMath.divide(int, int, RoundingMode.FLOOR) and LongMath.divide(int, int, RoundingMode.FLOOR). (Disclosure: I contribute to Guava.)
If you don't want to use a third-party library for this, you can still look at the implementation.
(I'm doing everything for longs since the answer for ints is the same, just substitute int for every long and Integer for every Long.)
You could just Math.floor a double division result, otherwise...
Original answer:
return n/d - ( ( n % d != 0 ) && ( (n<0) ^ (d<0) ) ? 1 : 0 );
Optimized answer:
public static long lfloordiv( long n, long d ) {
long q = n/d;
if( q*d == n ) return q;
return q - ((n^d) >>> (Long.SIZE-1));
}
(For completeness, using a BigDecimal with a ROUND_FLOOR rounding mode is also an option.)
New edit: Now I'm just trying to see how far it can be optimized for fun. Using Mark's answer the best I have so far is:
public static long lfloordiv2( long n, long d ){
if( d >= 0 ){
n = -n;
d = -d;
}
long tweak = (n >>> (Long.SIZE-1) ) - 1;
return (n + tweak) / d + tweak;
}
(Uses cheaper operations than the above, but slightly longer bytecode (29 vs. 26)).
There's a rather neat formula for this that works when n < 0 and d > 0: take the bitwise complement of n, do the division, and then take the bitwise complement of the result.
int ifloordiv(int n, int d)
{
if (n >= 0)
return n / d;
else
return ~(~n / d);
}
For the remainder, a similar construction works (compatible with ifloordiv in the sense that the usual invariant ifloordiv(n, d) * d + ifloormod(n, d) == n is satisfied) giving a result that's always in the range [0, d).
int ifloormod(int n, int d)
{
if (n >= 0)
return n % d;
else
return d + ~(~n % d);
}
For negative divisors, the formulas aren't quite so neat. Here are expanded versions of ifloordiv and ifloormod that follow your 'nice-to-have' behavior option (b) for negative divisors.
int ifloordiv(int n, int d)
{
if (d >= 0)
return n >= 0 ? n / d : ~(~n / d);
else
return n <= 0 ? n / d : (n - 1) / d - 1;
}
int ifloormod(int n, int d)
{
if (d >= 0)
return n >= 0 ? n % d : d + ~(~n % d);
else
return n <= 0 ? n % d : d + 1 + (n - 1) % d;
}
For d < 0, there's an unavoidable problem case when d == -1 and n is Integer.MIN_VALUE, since then the mathematical result overflows the type. In that case, the formula above returns the wrapped result, just as the usual Java division does. As far as I'm aware, this is the only corner case where we silently get 'wrong' results.
return BigDecimal.valueOf(n).divide(BigDecimal.valueOf(d), RoundingMode.FLOOR).longValue();