Interpolation x-vector - matlab

I'm using the interp1 function to interpolate some points on this graph
My problem is that I want the new points to be equidistant. But in the interp1 function the input arguments are the x(before) , y(before) and the x(new) which is the vertical coordinate and not the contour distance.
My question is if there is any other function which solves my problem? If not, does anyone know how can I transform the x-vector?
EDIT:
an example with my problem is here:
x=0:0.1:10;
y=x.^4;
xx=linspace(min(x),max(x),10);
yy=interp1(x,y,xx);
hold on;
plot(x,y);
plot(xx,yy);
plot(xx,yy,'ro');
hold off;

You can do this by reformulating your curve as a parametric function of length along the curve. What you want is for the final points (where you interpolate) to have equal length between them. It's possible to do this by approximating the 'true' curve as a piecewise linear curve that connects the original data points.
Say we have some data points in matrix xy, where each row is a point and the x/y coordinates are on columns 1/2:
% make some fake data
% triple exponential function has nonuniform spacing
x = linspace(.4, .8, 20)';
y = exp(exp(exp(x)));
x = (x - min(x)) ./ range(x);
y = (y-min(y)) ./ range(y);
xy = [x, y];
Find the length of each point along the curve, starting from 0 at the first point:
% distance of each point from previous point
% note that points need to be in order
ds = [0; sqrt(sum(diff(xy, 1, 1) .^ 2, 2))];
% integrate to find length along the curve
s = cumsum(ds);
Now, consider both x and y to be a function of s. Interpolate x and y at a set of equally spaced lengths along the curve:
% find a set of equally spaced lengths along the curve
si = linspace(s(1), s(end), 20)';
% interpolate x and y at these points
xyi = interp1(s, xy, si);
Verify that the solution works:
% distance between successive interpolated points
% they should all be equal
sqrt(sum(diff(xyi, 1, 1) .^ 2, 2)
Original data:
Interpolated:

Related

how to interpolate a fluctuated vector in matlab?

I have two arrays
x = [0 9.8312 77.1256 117.9810 99.9979];
y = [0 2.7545 4.0433 5.3763 5.0504];
figure; plot(x, y)
I want to make more samples of x and y then I interpolated both arrays. I tried this code
xi =min(x):.1:max(x);
yi = interp1(x,y,xi);
figure; plot(xi, yi)
but the trajectory is not same as previous plot. Its because the xi is not fluctuating same as x. How should I interpolate both arrays with same trajectory as original one?
This is an issue because when interpolating, MATLAB is going to ignore the order that you feed in the points and instead just sort them based upon their x location.
Rather than interpolating in x/y coordinates, you can instead use a parameter which represents the cumulative arc length of the line segments and use that to interpolate both the x and y coordinates. This will provide you with an interpolant that respects the order and guarantees monotonicity even for multiple values at the same x coordinate.
% Compute the distance between all points.
distances = sqrt(diff(x).^2 + diff(y).^2);
% Compute the cumulative arclength
t = cumsum([0 distances]);
% Determine the arclengths to interpolate at
tt = linspace(t(1), t(end), 1000);
% Now interpolate x and y at these locations
xi = interp1(t, x, tt);
yi = interp1(t, y, tt);

How to interpolate using in polar coordinate

I have polar coordinates, radius 0.05 <= r <= 1 and 0 ≤ θ ≤ 2π. The radius r is 50 values between 0.05 to 1, and polar angle θ is 24 values between 0 to 2π.
How do I interpolate r = 0.075 and theta = pi/8?
I dunno what you have tried, but interp2 works just as well on polar data as it does on Cartesian. Here is some evidence:
% Coordinates
r = linspace(0.05, 1, 50);
t = linspace(0, 2*pi, 24);
% Some synthetic data
z = sort(rand(50, 24));
% Values of interest
ri = 0.075;
ti = pi/8;
% Manually interpolate
rp = find(ri <= r, 1, 'first');
rm = find(ri >= r, 1, 'last');
tp = find(ti <= t, 1, 'first');
tm = find(ti >= t, 1, 'last');
drdt = (r(rp) - r(rm)) * (t(tp) - t(tm));
dr = [r(rp)-ri ri-r(rm)];
dt = [t(tp)-ti ti-t(tm)];
fZ = [z(rm, tm) z(rm, tp)
z(rp, tm) z(rp, tp)];
ZI_manual = (dr * fZ * dt.') / drdt
% Interpolate with MATLAB
ZI_MATLAB = interp2(r, t, z', ri, ti, 'linear')
Result:
ZI_manual =
2.737907208525297e-002
ZI_MATLAB =
2.737907208525298e-002
Based on comments you have the following information
%the test point
ri=0.53224;
ti = pi/8;
%formula fo generation of Z
g=9.81
z0=#(r)0.01*(g^2)*((2*pi)^-4)*(r.^-5).*exp(-1.25*(r/0.3).^-4);
D=#(t)(2/pi)*cos(t).^2;
z2=#(r,t)z0(r).*D(t) ;
%range of vlaues of r and theta
r=[0.05,0.071175,0.10132,0.14422,0.2053, 0.29225,0.41602,0.5922,0.84299,1.2];
t=[0,0.62832,1.2566,1.885, 2.5133,3.1416,3.7699,4.3982,5.0265,5.6549,6.2832];
and you want interplation of the test point.
When you sample some data to use them for interpolation you should consider how to sample data according to your requirements.
So when you are sampling a regular grid of polar coordinates ,those coordinates when converted to rectangular will form a circular shape that
most of the points are concentrated in the center of the cricle and when we move from the center to outer regions distance between the points increased.
%regular grid generated for r and t
[THETA R] = meshgrid(t ,r);
% Z for polar grid
Z=z2(R,THETA);
%convert coordinate from polar to cartesian(rectangular):
[X, Y] = pol2cart (THETA, R);
%plot points
plot(X, Y, 'k.');
axis equal
So when you use those point for interpolation the accuracy of the interpolation is greater in the center and lower in the outer regions where the distance between points increased.
In the other word with this sampling method you place more importance on the center region related to outer ones.
To increase accuracy density of grid points (r and theta) should be increased so if length of r and theta is 11 you can create r and theta with size 20 to increase accuracy.
In the other hand if you create a regular grid in rectangular coordinates an equal importance is given to each region . So accuracy of the interpolation will be the same in all regions.
For it first you create a regular grid in the polar coordinates then convert the grid to rectangular coordinates so you can calculate the extents (min max) of the sampling points in the rectangular coordinates. Based on this extents you can create a regular grid in the rectangular coordinates
Regular grid of rectangular coordinates then converted to polar coordinated to get z for grid points using z2 formula.
%get the extent of points
extentX = [min(X(:)) max(X(:))];
extentY = [min(Y(:)) max(Y(:))];
%sample 100 points(or more or less) inside a region specified be the extents
X_samples = linspace(extentX(1),extentX(2),100);
Y_samples = linspace(extentY(1),extentY(2),100);
%create regular grid in rectangular coordinates
[XX YY] = meshgrid(X_samples, Y_samples);
[TT RR] = cart2pol(XX,YY);
Z_rect = z2(RR,TT);
For interpolation of a test point say [ri ti] first it converted to rectangular then using XX ,YY value of z is interpolated
[xi yi] = pol2cart (ti, ri);
z=interp2(XX,YY,Z_rect,xi,yi);
If you have no choice to change how you sample the data and only have a grid of polar points as discussed with #RodyOldenhuis you can do the following:
Interpolate polar coordinates with interp2 (interpolation for gridded data)
this approach is straightforward but has the shortcoming that r and theta are not of the same scale and this may affect the accuracy of the interpolation.
z = interp2(THETA, R, Z, ti, ri)
convert polar coordinates to rectangular and then apply an interpolation method that is for scattered data.
this approach requires more computations but result of it is more reliable.
MATLAB has griddata function that given scattered points first generates a triangulation of points and then creates a regular grid on top of the triangles and interpolates values of grid points.
So if you want to interpolate value of point [ri ti] you should then apply a second interpolation to get value of the point from the interpolated grid.
With the help of some information from spatialanalysisonline and Wikipedia linear interpolation based on triangulation calculated this way (tested in Octave. In newer versions of MATLAB use of triangulation and pointLocation recommended instead of delaunay and tsearch ):
ri=0.53224;
ti = pi/8;
[THETA R] = meshgrid(t ,r);
[X, Y] = pol2cart (THETA, R);
[xi yi] = pol2cart (ti, ri);
%generate triangulation
tri = delaunay (X, Y);
%find the triangle that contains the test point
idx = tsearch (X, Y, tri, xi, yi);
pts= tri(idx,:);
%create a matrix that repesents equation of a plane (triangle) given its 3 points
m=[X(pts);Y(pts);Z(pts);ones(1,3)].';
%calculate z based on det(m)=0;
z= (-xi*det(m(:,2:end)) + yi*det([m(:,1) m(:,3:end)]) + det(m(:,1:end-1)))/det([m(:,1:2) m(:,end)]);
More refinement:
Since it is known that the search point is surrounded by 4 points we can use only those point for triangulation. these points form a trapezoid. Each diagonal of trapezoid forms two triangles so using vertices of the trapezoid we can form 4 triangles, also a point inside a trapezoid can lie in at least 2 triangles.
the previous method based on triangulation only uses information from one triangle but here z of the test point can be interpolated two times from data of two triangles and the calculated z values can be averaged to get a better approximation.
%find 4 points surrounding the test point
ft= find(t<=ti,1,'last');
fr= find(cos(abs(diff(t(ft+(0:1))))/2) .* r < ri,1,'last');
[T4 R4] = meshgrid(t(ft+(0:1)), r(fr+(0:1)));
[X4, Y4] = pol2cart (T4, R4);
Z4 = Z(fr+(0:1),ft+(0:1));
%form 4 triangles
tri2= nchoosek(1:4,3);
%empty vector of z values that will be interpolated from 4 triangles
zv = NaN(4,1);
for h = 1:4
pts = tri2(h,:);
% test if the point lies in the triangle
if ~isnan(tsearch(X4(:),Y4(:),pts,xi,yi))
m=[X4(pts) ;Y4(pts) ;Z4(pts); [1 1 1]].';
zv(h)= (-xi*det(m(:,2:end)) + yi*det([m(:,1) m(:,3:end)]) + det(m(:,1:end-1)))/det([m(:,1:2) m(:,end)]);
end
end
z= mean(zv(~isnan(zv)))
Result:
True z:
(0.0069246)
Linear Interpolation of (Gridded) Polar Coordinates :
(0.0085741)
Linear Interpolation with Triangulation of Rectangular Coordinates:
(0.0073774 or 0.0060992) based on triangulation
Linear Interpolation with Triangulation of Rectangular Coordinates(average):
(0.0067383)
Conclusion:
Result of interpolation related to structure of original data and the sampling method. If the sampling method matches pattern of original data result of interpolation is more accurate, so in cases that grid points of polar coordinates follow pattern of data result of interpolation of regular polar coordinate can be more reliable. But if regular polar coordinates do not match the structure of data or structure of data is such as an irregular terrain, method of interpolation based on triangulation can better represent the data.
please check this example, i used two for loops, inside for loop i used condition statement, if u comment this condition statement and run the program, u'll get correct answer, after u uncomment this condition statement and run the program, u'll get wrong answer. please check it.
% Coordinates
r = linspace(0.05, 1, 10);
t = linspace(0, 2*pi, 8);
% Some synthetic data
%z = sort(rand(50, 24));
z=zeros();
for i=1:10
for j=1:8
if r(i)<0.5||r(i)>1
z(i,j)=0;
else
z(i,j) = r(i).^3'*cos(t(j)/2);
end
end
end
% Values of interest
ri = 0.55;
ti = pi/8;
% Manually interpolate
rp = find(ri <= r, 1, 'first');
rm = find(ri >= r, 1, 'last');
tp = find(ti <= t, 1, 'first');
tm = find(ti >= t, 1, 'last');
drdt = (r(rp) - r(rm)) * (t(tp) - t(tm));
dr = [r(rp)-ri ri-r(rm)];
dt = [t(tp)-ti ti-t(tm)];
fZ = [z(rm, tm) z(rm, tp)
z(rp, tm) z(rp, tp)];
ZI_manual = (dr * fZ * dt.') / drdt
% Interpolate with MATLAB
ZI_MATLAB = interp2(r, t, z', ri, ti, 'linear')
Result:
z1 =
0.1632
ZI_manual =
0.1543
ZI_MATLAB =
0.1582

Generating cylindery symmetric 3D data by revolution of a 2d plane around one axis

Following a previous question that was asked, I wanted to create a 3d volume, i,e, f(x,y,z), starting from a 2D matrix I(x,y) and not just a curve.
For example, assume I=peaks(10), how can I revolve it around one of the axes (say the y-axis), to get a 3D matrix? Will it be easier if I instead have I(r,theta)?
I can rotate a plane in 3D, but this will not be part of a 3D matrix, just new x,y,z coordinates.
I think it's pretty straightforward to check the indices of your expected 3d array, find geometrically which I(x,y) value they correspond to (yes, essentially with a Cartesian to cylindrical transformation), then filling up each value as necessary.
Here's a minimal version of what I mean. It is assumed that the input array of size [N,N] corresponds to coordinates x, y in 0:N-1. The input array is assumed to be oriented along the xz plane, and it is rotated about the z axis in order to generate the output array V. The dimensions of V thus correspond to -(N-1):N-1 along x and y, and 0:N-1 along z. Thus the dimensions of V are [2*N-1, 2*N-1, N].
Demonstrating two approaches (using griddata and interp2, respectively), complete with plotting for reproducibility:
% size of the problem
N = 10;
% input data
I = peaks(N);
% two sets of output V for two methods
V1 = zeros(2*N-1,2*N-1,N);
V2 = zeros(2*N-1,2*N-1,N);
[i1,i2,i3] = ndgrid(1:2*N-1,1:2*N-1,1:N);
% [i1(:), i2(:), i3(:)] are the contiguous indices of V
% z dimension is the same as of I: rotate around z axis
% it will be assumed that input 1:N span elements from 0 to N-1
% output V spans -(N-1):N-1 along x and y
x = i1-N; % -(N-1):N-1
y = i2-N; % -(N-1):N-1
z = i3-1; % 0:N-1
% input array I is in xz plane, rotated along z axis, geometrically speaking
% identify the cylindrical coordinates of each voxel [i1,i2,i3]
[~,r_out,z_out] = cart2pol(x,y,z); % theta is redundant; z_out===z
% identify the coordinates of each input pixel with the above
[j1,j2] = meshgrid(1:N,1:N);
r_in = j1-1; % Cartesian input x <-> cylindrical output r
z_in = j2-1; % Cartesian input y <-> cylindrical output z
% note that j1 and j2 are swapped with respect to x and y
% but this is what interp2 will expect later
% interpolate each voxel based on r and z
method = 'nearest'; %probably the least biased
%method = 'cubic'; %probably the prettiest
V1(:) = griddata(r_in,z_in,I,...
r_out(:),z_out(:),method);
V2(:) = interp2(r_in,z_in,I,...
r_out(:),z_out(:),method,...
0); % extrapolation value, otherwise NaNs appear outside
% plot two slices: xz plane and general rotated one
figure;
% generate rotated versions of the xz plane by rotating with phi around z
for phi=[0, -25, -90]/180*pi
[xp0,zp] = meshgrid(-(N-1):0.1:N-1,0:0.1:N-1);
xp = xp0*cos(phi);
yp = xp0*sin(phi);
subplot(121);
slice(y,x,z,V1,xp,yp,zp);
title('griddata nearest');
shading flat;
axis equal vis3d;
hold on;
subplot(122);
slice(y,x,z,V2,xp,yp,zp);
title('interp2 nearest, extrap 0');
shading flat;
axis equal vis3d;
hold on;
end
As you can see, slice directly plots the data in V, so this is an accurate representation of the resulting 3d array.
For reference, here is a single specimen of the input I = peaks(10):

surfnorm function more efficient way Matlab

After constructing the point cloud I want to get the normal of each point and I used the built-in matlab function surfnorm but its takes a lot of processing time. So if anyone could assist me do this a better and more efficient way.
I wonder if the following code would help you. There are three steps here.
Create 500 randomly spaced points (x,y), and compute a corresponding value z (the height of the surface) for which I chose a sinc like function
Resample the random points using the TriScatteredInterp function - this permits me to obtain points on an evenly sampled grid that "roughly correspond" to the initial surface
Compute the normal to "some points" on that grid (since there are 480x640 points, computing the normal at every point would just create an impossibly dense "forest of vectors"; by sampling "every 10th point" you can actually see what you are doing
The code I used was as follows:
randomX = rand(1,500);
randomY = rand(1,500);
r = 5*sqrt(randomX.^2 + randomY.^2);
randomZ = sin(r) ./ r;
% resample the data:
[xx yy] = meshgrid(linspace(0,1,640), linspace(0,1,480));
F = TriScatteredInterp(randomX(:), randomY(:), randomZ(:));
zz = F(xx, yy);
%% at each point, the normal is cross product of vectors to neighbors
xyz=reshape([xx yy zz],[size(xx) 3]);
xv = 10:30:479; yv = 10:30:639; % points at which to compute normals
dx = xyz(xv, yv+1, :) - xyz(xv, yv, :);
dy = xyz(xv+1, yv, :) - xyz(xv, yv, :);
normVecs = cross(dx, dy); % here we compute the normals.
normVecs = normVecs ./ repmat(sqrt(sum(normVecs.^2, 3)), [1 1 3]);
figure;
quiver3(xx(xv, yv), yy(xv, yv), zz(xv, yv), ...
normVecs(:,:,1), normVecs(:,:,2), normVecs(:,:,3));
axis equal
view([56 22]);
And the resulting plot:

Matlab:Make a contour plot with 3 vectors

I have 3 vectors of data, X (position), Y (position) both of which are not regularly spaced, and Z(value of interest at each location). I tried contourf, which doesn't work because it needs a matrix for Z input.
You can also use griddata.
%Generate random data
x = rand(30,1);
y = rand(30,1);
z = rand(30,1);
%Create regular grid across data space
[X,Y] = meshgrid(linspace(min(x),max(x),n), linspace(min(y),max(y),n))
%create contour plot
contour(X,Y,griddata(x,y,z,X,Y))
%mark original data points
hold on;scatter(x,y,'o');hold off
For a contour plot you actually need either a matrix of z values, or a set (vector) of z-values evaluated on a grid. You cannot define contours using isolated Z values at (X,Y) points on the grid (i.e. what you claim you have).
You need to have the generating process (or function) provide values for a grid of (x,y) points.
If not, then you can create a surface from nonuniform data as #nate correctly pointed out, and then draw the contours on that surface.
Consider the following (random) example:
N = 64; % point set
x = -2 + 4*rand(N,1); % random x vector in[-2,2]
y = -2 + 4*rand(N,1); % random y vector in[-2,2]
% analytic function, or z-vector
z = x.*exp(-x.^2-y.^2);
% construct the interpolant function
F = TriScatteredInterp(x,y,z);
t = -2:.25:2; % sample uniformly the surface for matrices (qx, qy, qz)
[qx, qy] = meshgrid(t, t);
qz = F(qx, qy);
contour(qx, qy, qz); hold on;
plot(x,y,'bo'); hold off
The circles correspond to the original vector points with values (x,y,z) per point, the contours on the contours of the interpolant surface.