ROC curve using Euclidean distance (MatLab) - matlab

Trying to understand the function perfcurve in MatLab.
Information regarding the function is confusing me at two points.
At one place, it says that
You can use perfcurve with any classifier or, more broadly, with any method that returns a numeric score for an instance of input data. By convention adopted here,
A high score returned by a classifier for any given instance signifies that the instance is likely from the positive class.
A low score signifies that the instance is likely from the negative classes.
At another point, it says that
perfcurve does not impose any requirements on the input score range. Because of this lack of normalization, you can use perfcurve to process scores returned by any classification, regression, or fit method. perfcurve does not make any assumptions about the nature of input scores or relationships between the scores for different classes.
So I was using Euclidean distance for a face recognition, user identification problem to output whether a user is already enrolled in the database or not. Since the Euclidean distance is a measure of dis-similarity and not the other way round, a lower score denotes a 1 and a higher scores denotes a 0. Can I then use these output scores directly as an argument in perfcurve, or do I need to modify it in some way?
This is the output I am currently getting for SIFT-based matching. Either there is some problem with my implementation, or the plot isn't correct. I need to figure that out.

Related

Multiclass classification or regression?

I am trying to train a CNN model to classify images based on their aesthetic score. There are 2,00,000 images and every image is rated by more than 100 subjects. Mean score is calculated and the scores are normalized.
The distribution of the scores is approximately gaussian. So I have decided to build a 10 class classification model after assigning appropriate weight for each class as the data is imbalanced.
My question:
For this problem, the scores are continuous, ie, 0<0.2<0.3<0.4<0.5<..<1.
Then does that mean this is a regression problem? If so, how do I balance the data for a regression problem, as most of the datapoints are present in between 0.4 and 0.6.
Thanks!
Since your labels are continuous, you could divide them in to 10 equal quantiles using a technique like pandas.qcut() and provide label to each classes. This can turn a regression problem to a classification problem.
And as far as the imbalance is concerned, you may want to try to oversample the minority data. This will ensure your model is not biased towards majority data.
Hope this helps.
I would recommend you to do a Histogram Equalization over ALL data of your participants first, so that their ratings are destributed equaly.
Then for each image in your training set calculate the Expected Value (and if you also want to, the Variance) The Expected Value is just the mean of the votes. For the Variance there are standard functions in (almost) every programming language where you can input an array of votes which will output the Variance.
Now take the Expected Value (and if you want also the Variance) as your ground truth for your Network.
EDIT: Histogram Equalization:
Histogram equalization is a method to use the given numerical range as efficient as possible.
In the context of images, this would change the pixel values, so that the darkest pixel becomes the value 0 and the lightest value becomes 255. Furthermore every grayscale value gets destributed so that it occurs as often as each other (in average). For your dataset you want the same. Even though your values are not from 0 to 255 but from 0 to 10. Furthermore you don't need to (and shoudn't) round the resulting values to integers. In this way more often occurring votes are more spread and less often votes are contracted.
Maybe you should first calculate the expected value and than do the histogram equalization over the expected values of all images.
By this the CNN sould be able to better differentiate those small differences.

Error function and ReLu in a CNN

I'm trying to get a better understanding of neural networks by trying to programm a Convolution Neural Network by myself.
So far, I'm going to make it pretty simple by not using max-pooling and using simple ReLu-activation. I'm aware of the disadvantages of this setup, but the point is not making the best image detector in the world.
Now, I'm stuck understanding the details of the error calculation, propagating it back and how it interplays with the used activation-function for calculating the new weights.
I read this document (A Beginner's Guide To Understand CNN), but it doesn't help me understand much. The formula for calculating the error already confuses me.
This sum-function doesn't have defined start- and ending points, so i basically can't read it. Maybe you can simply provide me with the correct one?
After that, the author assumes a variable L that is just "that value" (i assume he means E_total?) and gives an example for how to define the new weight:
where W is the weights of a particular layer.
This confuses me, as i always stood under the impression the activation-function (ReLu in my case) played a role in how to calculate the new weight. Also, this seems to imply i simply use the error for all layers. Doesn't the error value i propagate back into the next layer somehow depends on what i calculated in the previous one?
Maybe all of this is just uncomplete and you can point me into the direction that helps me best for my case.
Thanks in advance.
You do not backpropagate errors, but gradients. The activation function plays a role in caculating the new weight, depending on whether or not the weight in question is before or after said activation, and whether or not it is connected. If a weight w is after your non-linearity layer f, then the gradient dL/dw wont depend on f. But if w is before f, then, if they are connected, then dL/dw will depend on f. For example, suppose w is the weight vector of a fully connected layer, and assume that f directly follows this layer. Then,
dL/dw=(dL/df)*df/dw //notations might change according to the shape
//of the tensors/matrices/vectors you chose, but
//this is just the chain rule
As for your cost function, it is correct. Many people write these formulas in this non-formal style so that you get the idea, but that you can adapt it to your own tensor shapes. By the way, this sort of MSE function is better suited to continous label spaces. You might want to use softmax or an svm loss for image classification (I'll come back to that). Anyway, as you requested a correct form for this function, here is an example. Imagine you have a neural network that predicts a vector field of some kind (like surface normals). Assume that it takes a 2d pixel x_i and predicts a 3d vector v_i for that pixel. Now, in your training data, x_i will already have a ground truth 3d vector (i.e label), that we'll call y_i. Then, your cost function will be (the index i runs on all data samples):
sum_i{(y_i-v_i)^t (y_i-vi)}=sum_i{||y_i-v_i||^2}
But as I said, this cost function works if the labels form a continuous space (here , R^3). This is also called a regression problem.
Here's an example if you are interested in (image) classification. I'll explain it with a softmax loss, the intuition for other losses is more or less similar. Assume we have n classes, and imagine that in your training set, for each data point x_i, you have a label c_i that indicates the correct class. Now, your neural network should produce scores for each possible label, that we'll note s_1,..,s_n. Let's note the score of the correct class of a training sample x_i as s_{c_i}. Now, if we use a softmax function, the intuition is to transform the scores into a probability distribution, and maximise the probability of the correct classes. That is , we maximse the function
sum_i { exp(s_{c_i}) / sum_j(exp(s_j))}
where i runs over all training samples, and j=1,..n on all class labels.
Finally, I don't think the guide you are reading is a good starting point. I recommend this excellent course instead (essentially the Andrew Karpathy parts at least).

Self-Organizing Maps

I have a question on self-organizing maps:
But first, here is my approach on implementing one:
The som neurons are stored in a basic array. Each neuron consists of a vector (another array of the size of the input neurons) of double values which are initialized to a random value.
As far as I understand the algorithm, this is actually all I need to implement it.
So, for the training I choose a sample of the training data at random an calculate the BMU using the Euclidian distance of sample's values and the neuron weights.
Afterwards I update it's weights and all other neurons in it's range depending on the neighborhood function and the learning rate.
Then, I decrease the neighborhood function and the learning rate.
This is done until a fixed amount of iterations.
My question is now: How do I determine the clusters after the training? My approach so far is to present a new input vector and calculate the min Euclidian distance between it and the BMU . But this seems a little naive to me. I'm sure that I've missed something.
There is no single correct way of doing that. As you noted, finding the BMU is one of them and the only one that makes sense if you just want to find the most similar cluster.
If you want to reconstruct your input vector, returning the BMU prototype works too, but may not be very precise (it is equivalent to the Nearest Neighbor rule or 1NN). Then you need to interpolate between neurons to find a better reconstruction. This could be done by weighting each neuron inversely proportional to their distance to the input vector and then computing the weighted average (this is equivalent to weighted KNN). You can also restrict this interpolation only to the BMU's neighbors, which will work faster and may give better results (this would be weighted 5NN). This technique was used here: The Continuous Interpolating Self-organizing Map.
You can see and experiment with those different options here: http://www.inf.ufrgs.br/~rcpinto/itm/ (not a SOM, but a close cousin). Click "Apply" to do regression on a curve using the reconstructed vectors, then check "Draw Regression" and try the different options.
BTW, the description of your implementation is correct.
A pretty common approach nowadays is the soft subspace clustering, where feature weights are added to find the most relevant features. You can use these weights to increase performance and improve the BMU calculation with euclidean distance.

What's the best way to calculate a numerical derivative in MATLAB?

(Note: This is intended to be a community Wiki.)
Suppose I have a set of points xi = {x0,x1,x2,...xn} and corresponding function values fi = f(xi) = {f0,f1,f2,...,fn}, where f(x) is, in general, an unknown function. (In some situations, we might know f(x) ahead of time, but we want to do this generally, since we often don't know f(x) in advance.) What's a good way to approximate the derivative of f(x) at each point xi? That is, how can I estimate values of dfi == d/dx fi == df(xi)/dx at each of the points xi?
Unfortunately, MATLAB doesn't have a very good general-purpose, numerical differentiation routine. Part of the reason for this is probably because choosing a good routine can be difficult!
So what kinds of methods are there? What routines exist? How can we choose a good routine for a particular problem?
There are several considerations when choosing how to differentiate in MATLAB:
Do you have a symbolic function or a set of points?
Is your grid evenly or unevenly spaced?
Is your domain periodic? Can you assume periodic boundary conditions?
What level of accuracy are you looking for? Do you need to compute the derivatives within a given tolerance?
Does it matter to you that your derivative is evaluated on the same points as your function is defined?
Do you need to calculate multiple orders of derivatives?
What's the best way to proceed?
These are just some quick-and-dirty suggestions. Hopefully somebody will find them helpful!
1. Do you have a symbolic function or a set of points?
If you have a symbolic function, you may be able to calculate the derivative analytically. (Chances are, you would have done this if it were that easy, and you would not be here looking for alternatives.)
If you have a symbolic function and cannot calculate the derivative analytically, you can always evaluate the function on a set of points, and use some other method listed on this page to evaluate the derivative.
In most cases, you have a set of points (xi,fi), and will have to use one of the following methods....
2. Is your grid evenly or unevenly spaced?
If your grid is evenly spaced, you probably will want to use a finite difference scheme (see either of the Wikipedia articles here or here), unless you are using periodic boundary conditions (see below). Here is a decent introduction to finite difference methods in the context of solving ordinary differential equations on a grid (see especially slides 9-14). These methods are generally computationally efficient, simple to implement, and the error of the method can be simply estimated as the truncation error of the Taylor expansions used to derive it.
If your grid is unevenly spaced, you can still use a finite difference scheme, but the expressions are more difficult and the accuracy varies very strongly with how uniform your grid is. If your grid is very non-uniform, you will probably need to use large stencil sizes (more neighboring points) to calculate the derivative at a given point. People often construct an interpolating polynomial (often the Lagrange polynomial) and differentiate that polynomial to compute the derivative. See for instance, this StackExchange question. It is often difficult to estimate the error using these methods (although some have attempted to do so: here and here). Fornberg's method is often very useful in these cases....
Care must be taken at the boundaries of your domain because the stencil often involves points that are outside the domain. Some people introduce "ghost points" or combine boundary conditions with derivatives of different orders to eliminate these "ghost points" and simplify the stencil. Another approach is to use right- or left-sided finite difference methods.
Here's an excellent "cheat sheet" of finite difference methods, including centered, right- and left-sided schemes of low orders. I keep a printout of this near my workstation because I find it so useful.
3. Is your domain periodic? Can you assume periodic boundary conditions?
If your domain is periodic, you can compute derivatives to a very high order accuracy using Fourier spectral methods. This technique sacrifices performance somewhat to gain high accuracy. In fact, if you are using N points, your estimate of the derivative is approximately N^th order accurate. For more information, see (for example) this WikiBook.
Fourier methods often use the Fast Fourier Transform (FFT) algorithm to achieve roughly O(N log(N)) performance, rather than the O(N^2) algorithm that a naively-implemented discrete Fourier transform (DFT) might employ.
If your function and domain are not periodic, you should not use the Fourier spectral method. If you attempt to use it with a function that is not periodic, you will get large errors and undesirable "ringing" phenomena.
Computing derivatives of any order requires 1) a transform from grid-space to spectral space (O(N log(N))), 2) multiplication of the Fourier coefficients by their spectral wavenumbers (O(N)), and 2) an inverse transform from spectral space to grid space (again O(N log(N))).
Care must be taken when multiplying the Fourier coefficients by their spectral wavenumbers. Every implementation of the FFT algorithm seems to have its own ordering of the spectral modes and normalization parameters. See, for instance, the answer to this question on the Math StackExchange, for notes about doing this in MATLAB.
4. What level of accuracy are you looking for? Do you need to compute the derivatives within a given tolerance?
For many purposes, a 1st or 2nd order finite difference scheme may be sufficient. For higher precision, you can use higher order Taylor expansions, dropping higher-order terms.
If you need to compute the derivatives within a given tolerance, you may want to look around for a high-order scheme that has the error you need.
Often, the best way to reduce error is reducing the grid spacing in a finite difference scheme, but this is not always possible.
Be aware that higher-order finite difference schemes almost always require larger stencil sizes (more neighboring points). This can cause issues at the boundaries. (See the discussion above about ghost points.)
5. Does it matter to you that your derivative is evaluated on the same points as your function is defined?
MATLAB provides the diff function to compute differences between adjacent array elements. This can be used to calculate approximate derivatives via a first-order forward-differencing (or forward finite difference) scheme, but the estimates are low-order estimates. As described in MATLAB's documentation of diff (link), if you input an array of length N, it will return an array of length N-1. When you estimate derivatives using this method on N points, you will only have estimates of the derivative at N-1 points. (Note that this can be used on uneven grids, if they are sorted in ascending order.)
In most cases, we want the derivative evaluated at all points, which means we want to use something besides the diff method.
6. Do you need to calculate multiple orders of derivatives?
One can set up a system of equations in which the grid point function values and the 1st and 2nd order derivatives at these points all depend on each other. This can be found by combining Taylor expansions at neighboring points as usual, but keeping the derivative terms rather than cancelling them out, and linking them together with those of neighboring points. These equations can be solved via linear algebra to give not just the first derivative, but the second as well (or higher orders, if set up properly). I believe these are called combined finite difference schemes, and they are often used in conjunction with compact finite difference schemes, which will be discussed next.
Compact finite difference schemes (link). In these schemes, one sets up a design matrix and calculates the derivatives at all points simultaneously via a matrix solve. They are called "compact" because they are usually designed to require fewer stencil points than ordinary finite difference schemes of comparable accuracy. Because they involve a matrix equation that links all points together, certain compact finite difference schemes are said to have "spectral-like resolution" (e.g. Lele's 1992 paper--excellent!), meaning that they mimic spectral schemes by depending on all nodal values and, because of this, they maintain accuracy at all length scales. In contrast, typical finite difference methods are only locally accurate (the derivative at point #13, for example, ordinarily doesn't depend on the function value at point #200).
A current area of research is how best to solve for multiple derivatives in a compact stencil. The results of such research, combined, compact finite difference methods, are powerful and widely applicable, though many researchers tend to tune them for particular needs (performance, accuracy, stability, or a particular field of research such as fluid dynamics).
Ready-to-Go Routines
As described above, one can use the diff function (link to documentation) to compute rough derivatives between adjacent array elements.
MATLAB's gradient routine (link to documentation) is a great option for many purposes. It implements a second-order, central difference scheme. It has the advantages of computing derivatives in multiple dimensions and supporting arbitrary grid spacing. (Thanks to #thewaywewalk for pointing out this glaring omission!)
I used Fornberg's method (see above) to develop a small routine (nderiv_fornberg) to calculate finite differences in one dimension for arbitrary grid spacings. I find it easy to use. It uses sided stencils of 6 points at the boundaries and a centered, 5-point stencil in the interior. It is available at the MATLAB File Exchange here.
Conclusion
The field of numerical differentiation is very diverse. For each method listed above, there are many variants with their own set of advantages and disadvantages. This post is hardly a complete treatment of numerical differentiation.
Every application is different. Hopefully this post gives the interested reader an organized list of considerations and resources for choosing a method that suits their own needs.
This community wiki could be improved with code snippets and examples particular to MATLAB.
I believe there is more in to these particular questions. So I have elaborated on the subject further as follows:
(4) Q: What level of accuracy are you looking for? Do you need to compute the derivatives within a given tolerance?
A: The accuracy of numerical differentiation is subjective to the application of interest. Usually the way it works is, if you are using the ND in forward problem to approximate the derivatives to estimate features from signal of interest, then you should be aware of noise perturbations. Usually such artifacts contain high frequency components and by the definition of the differentiator, the noise effect will be amplified in the magnitude order of $i\omega^n$. So, increasing the accuracy of differentiator (increasing the polynomial accuracy) will no help at all. In this case you should be able to cancelt the effect of noise for differentiation. This can be done in casecade order: first smooth the signal, and then differentiate. But a better way of doing this is to use "Lowpass Differentiator". A good example of MATLAB library can be found here.
However, if this is not the case and you're using ND in inverse problems, such as solvign PDEs, then the global accuracy of differentiator is very important. Depending on what kind of bounady condition (BC) suits your problem, the design will be adapted accordingly. The rule of thump is to increase the numerical accuracy known is the fullband differentiator. You need to design a derivative matrix that takes care of suitable BC. You can find comprehensive solutions to such designs using the above link.
(5) Does it matter to you that your derivative is evaluated on the same points as your function is defined?
A: Yes absolutely. The evaluation of the ND on the same grid points is called "centralized" and off the points "staggered" schemes. Note that using odd order of derivatives, centralized ND will deviate the accuracy of frequency response of the differentiator. Therefore, if you're using such design in inverse problems, this will perturb your approximation. Also, the opposite applies to the case of even order of differentiation utilized by staggered schemes. You can find comprehensive explanation on this subject using the link above.
(6) Do you need to calculate multiple orders of derivatives?
This totally depends on your application at hand. You can refer to the same link I have provided and take care of multiple derivative designs.

KNN classification with categorical data

I'm busy working on a project involving k-nearest neighbor (KNN) classification. I have mixed numerical and categorical fields. The categorical values are ordinal (e.g. bank name, account type). Numerical types are, for e.g. salary and age. There are also some binary types (e.g., male, female).
How do I go about incorporating categorical values into the KNN analysis?
As far as I'm aware, one cannot simply map each categorical field to number keys (e.g. bank 1 = 1; bank 2 = 2, etc.), so I need a better approach for using the categorical fields. I have heard that one can use binary numbers. Is this a feasible method?
You need to find a distance function that works for your data. The use of binary indicator variables solves this problem implicitly. This has the benefit of allowing you to continue your probably matrix based implementation with this kind of data, but a much simpler way - and appropriate for most distance based methods - is to just use a modified distance function.
There is an infinite number of such combinations. You need to experiment which works best for you. Essentially, you might want to use some classic metric on the numeric values (usually with normalization applied; but it may make sense to also move this normalization into the distance function), plus a distance on the other attributes, scaled appropriately.
In most real application domains of distance based algorithms, this is the most difficult part, optimizing your domain specific distance function. You can see this as part of preprocessing: defining similarity.
There is much more than just Euclidean distance. There are various set theoretic measures which may be much more appropriate in your case. For example, Tanimoto coefficient, Jaccard similarity, Dice's coefficient and so on. Cosine might be an option, too.
There are whole conferences dedicated to the topics of similarity search - nobody claimed this is trivial in anything but Euclidean vector spaces (and actually, not even there): http://www.sisap.org/2012
The most straight forward way to convert categorical data into numeric is by using indicator vectors. See the reference I posted at my previous comment.
Can we use Locality Sensitive Hashing (LSH) + edit distance and assume that every bin represents a different category? I understand that categorical data does not show any order and the bins in LSH are arranged according to a hash function. Finding the hash function that gives a meaningful number of bins sounds to me like learning a metric space.